The role of the sympathetic nervous system in amylase secretion elicited by parasympathetic nerve stimulation

1968 ◽  
Vol 3 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Iwao Yamamoto ◽  
Reizo Inoki ◽  
Akira Tsujimoto ◽  
Sekizo Kojima
1981 ◽  
Vol 97 (1) ◽  
pp. 91-97 ◽  
Author(s):  
H. Storm ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

Abstract. Basal plasma levels for adrenalin (A), noradrenalin (NA), l-triiodothyronine (T3), and l-thyroxine (T4) were determined in rats with a chronically inserted catheter. The experiments described in this report were started 3 days after the surgical procedure when T3 and T4 levels had returned to normal. Basal levels for the catecholamines were reached already 4 h after the operation. The T3/T4 ratio in plasma was significantly increased after 3, 7, and 14 days in rats kept at 4°C and the same holds for the iodide in the 24-h urine after 7 and 14 days at 4°C. The venous NA plasma concentration was increased 6- to 12-fold during the same period of exposure to cold, whereas the A concentration remained at the basal level. During infusion of NA at 23°C the T3/T4 ratio in plasma was significantly increased after 7 days compared to pair-fed controls, and the same holds for the iodide excretion in the 24-h urine. This paper presents further evidence for a role of the sympathetic nervous system on T4 metabolism in rats at resting conditions.


2008 ◽  
Vol 4 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Kazuko Masuo ◽  
Gavin Lambert ◽  
Hiromi Rakugi ◽  
Toshio Ogihara ◽  
Murray Esler

1987 ◽  
Vol 253 (4) ◽  
pp. G531-G539 ◽  
Author(s):  
R. A. Gillis ◽  
J. Dias Souza ◽  
K. A. Hicks ◽  
A. W. Mangel ◽  
F. D. Pagani ◽  
...  

The purpose of this study is to determine whether or not the sympathetic nervous system provides a tonic inhibitory input to the colon in chloralose-anesthetized cats. Proximal and midcolonic motility were monitored using extraluminal force transducers. An intravenous bolus injection of 5 mg of phentolamine in 14 animals elicited a pronounced increase in proximal colon contractility. The minute motility index changed from 0 +/- 0 to 26 +/- 4 after phentolamine administration. Midcolonic motility also increased in response to phentolamine. Specific blockade of alpha 2-receptors, but not alpha 1-receptors, caused the same response seen with phentolamine. alpha-Adrenergic blockade increased colon contractility after spinal cord transection but not after ganglionic blockade. Blockade of alpha-adrenergic receptors was also performed before vagal and pelvic nerve stimulation and in both cases increased colonic motility. Vagal stimulation alone had no effect on colonic contractility, while pelvic nerve stimulation increased motility at the midcolon. alpha-Receptor blockade did not alter the ineffectiveness of vagal stimulation but did unmask excitatory effects of pelvic nerve stimulation on the proximal colon. All excitatory colonic responses were prevented by blocking muscarinic cholinergic receptors. These data indicate that tonic sympathetic nervous system activity exerts an inhibitory effect on colonic motility. The inhibitory effect is mediated through alpha 2-adrenergic receptors. Based on these findings, we suggest that alterations in sympathetic nervous system activity may be extremely important for the regulation of circular muscle contractions in the colon.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Costas Tsioufis ◽  
Athanasios Kordalis ◽  
Dimitris Flessas ◽  
Ioannis Anastasopoulos ◽  
Dimitris Tsiachris ◽  
...  

Resistant hypertension (RH) is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS) activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.


Sign in / Sign up

Export Citation Format

Share Document