Inhibitory control of proximal colonic motility by the sympathetic nervous system

1987 ◽  
Vol 253 (4) ◽  
pp. G531-G539 ◽  
Author(s):  
R. A. Gillis ◽  
J. Dias Souza ◽  
K. A. Hicks ◽  
A. W. Mangel ◽  
F. D. Pagani ◽  
...  

The purpose of this study is to determine whether or not the sympathetic nervous system provides a tonic inhibitory input to the colon in chloralose-anesthetized cats. Proximal and midcolonic motility were monitored using extraluminal force transducers. An intravenous bolus injection of 5 mg of phentolamine in 14 animals elicited a pronounced increase in proximal colon contractility. The minute motility index changed from 0 +/- 0 to 26 +/- 4 after phentolamine administration. Midcolonic motility also increased in response to phentolamine. Specific blockade of alpha 2-receptors, but not alpha 1-receptors, caused the same response seen with phentolamine. alpha-Adrenergic blockade increased colon contractility after spinal cord transection but not after ganglionic blockade. Blockade of alpha-adrenergic receptors was also performed before vagal and pelvic nerve stimulation and in both cases increased colonic motility. Vagal stimulation alone had no effect on colonic contractility, while pelvic nerve stimulation increased motility at the midcolon. alpha-Receptor blockade did not alter the ineffectiveness of vagal stimulation but did unmask excitatory effects of pelvic nerve stimulation on the proximal colon. All excitatory colonic responses were prevented by blocking muscarinic cholinergic receptors. These data indicate that tonic sympathetic nervous system activity exerts an inhibitory effect on colonic motility. The inhibitory effect is mediated through alpha 2-adrenergic receptors. Based on these findings, we suggest that alterations in sympathetic nervous system activity may be extremely important for the regulation of circular muscle contractions in the colon.

1996 ◽  
Vol 271 (4) ◽  
pp. H1416-H1422 ◽  
Author(s):  
H. M. Stauss ◽  
K. C. Kregel

Power spectrum analysis of arterial blood pressure (BP) and heart rate (HR) has been used to investigate autonomic nervous system activity. Sympathetic-mediated vasomotor tone has been attributed to the BP power at frequencies between 0.05 and 0.15 Hz in humans and dogs and between 0.2 and 0.8 Hz in rats. In contrast, it has been suggested that the sympathetic nervous system is too sluggish to transmit frequencies higher than 0.017 Hz in dogs. Thus we investigated the frequency-response characteristics of the transmission of peripheral sympathetic nerve discharge to peripheral vascular resistance and arterial blood pressure in conscious rats. Eleven rats were instrumented with arterial catheters, nerve electrodes on the sympathetic splanchnic nerve, and flow probes on the superior mesenteric artery. The splanchnic nerve was cut proximal to the electrode to avoid afferent nerve stimulation. The next day the nerve was stimulated at frequencies of 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 Hz while mesenteric blood flow, BP, and HR were recorded in conscious rats. Mesenteric resistance (MR) was calculated off-line. Nerve stimulation at 0.05, 0.1, 0.2, 0.5, and 1.0 Hz significantly increased the power in MR at these respective frequencies. The greatest response was found between 0.2 and 0.5 Hz. These oscillations in MR were translated to oscillations in BP, but not in HR. Nerve stimulation on the second day, when the nerve was degenerated, did not elicit oscillations in MR or BP. We conclude that the peripheral sympathetic nervous system in rats can transmit signals at frequencies higher than those traditionally assigned to sympathetic vasomotor activity in several species, including humans, and may even overlap with the respiration-related high-frequency range.


1994 ◽  
Vol 267 (1) ◽  
pp. H187-H194 ◽  
Author(s):  
K. F. Hilgers ◽  
R. Veelken ◽  
I. Kreppner ◽  
D. Ganten ◽  
F. C. Luft ◽  
...  

We tested the hypothesis that local vascular formation of angiotensin (ANG) II and the sympathetic nervous system potentiate each other. Isolated rat hindquarters were perfused with an artificial medium, and ANG I and II release was measured by high-performance liquid chromatography and radioimmunoassay. Electrical stimulation of the lumbar sympathetic chain (0.5, 2, and 8 Hz) did not affect vascular ANG release in Sprague-Dawley (SD) rats. Hypertensive, ren-2 transgenic (TG+) rat hindquarters released significantly more ANG I (110 +/- 19 vs. 65 +/- 21 fmol/30 min in SD rats) and ANG II (235 +/- 22 vs. 140 +/- 30 fmol/30 min); however, nerve stimulation did not alter ANG release in TG+ rats. Captopril inhibited vascular ANG II release by 90%, but neither captopril nor ANG II receptor blockade by losartan affected the pressor response to nerve stimulation in SD and TG+ rats. Isoproterenol failed to increase either vascular ANG release or pressor response to nerve stimulation in SD or spontaneously hypertensive rat hindquarters. Exogenous renin, which increased vascular ANG release approximately 100-fold, prolonged the pressor responses to nerve stimulation. We conclude that the vascular renin-ANG system does not interact with the sympathetic nervous system locally. However, high concentrations of ANG II, which can be induced by circulation-derived renin, may prolong the duration of sympathetic nerve-induced vasoconstriction.


1991 ◽  
Vol 261 (4) ◽  
pp. R920-R927 ◽  
Author(s):  
C. Haddad ◽  
J. A. Armour

The functional cardiac innervation of 61 puppies from nine different litters (2-8 littermates), ranging in age from 1 day to 7 wk, was investigated. The efferent sympathetic nervous system exerted minimal effects on the heart of 1-day-old puppies, gradually influencing the heart more thereafter such that by 7 wk of life it was functionally mature. In contrast, efferent parasympathetic cardiac innervation was well developed at birth, maturing thereafter such that by 4-7 wk of age its capacity to modulate the heart was similar to that found in adults. The right- and left-sided efferent sympathetic and parasympathetic intrathoracic nervous systems induced similar cardiac modulation throughout this period of development. Cardiac myocyte beta-adrenergic receptors were partially functional at birth, as determined by responses elicited by supramaximal doses of the beta-agonist isoproterenol. Responses elicited by isoproterenol became greater over the following 7 wk of life, when they were found to be similar to those elicited in adults. By 1 wk of age, synaptic mechanisms in intrathoracic sympathetic ganglia involved in cardiac regulation were relatively well developed, with cardiopulmonary-cardiac reflexes present but not functionally mature at that age. It is concluded that maturation of the efferent sympathetic nervous system modulating the canine heart depends to a large extent on the ontogeny of cardiac beta-adrenergic receptors rather than the ontogeny of synapses in intrathoracic ganglia. Furthermore, even though functional cardiac efferent parasympathetic innervation is present before efferent sympathetic innervation, both reach maturity at about the same age.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 769-769
Author(s):  
Yuko Kawano ◽  
Chie Fukui ◽  
Kanako Wakahashi ◽  
Shinichi Ishii ◽  
Tomohide Suzuki ◽  
...  

Abstract The mobilization of hematopoietic stem/progenitor cells (HSC/HPCs) from the bone marrow (BM) to peripheral blood by granulocyte colony-stimulating factor (G-CSF) is an essential method in clinic. We have shown that the suppression of osteoblastic niche by β-adrenergic signal is critical for this phenomenon (Cell 2006; Cell Stem Cell 2013). Because G-CSF administration causes fever and back pain and these symptoms are ameliorated by non-steroidal anti-inflammatory drugs, we investigated the role of prostaglandin E2 (PGE2) in the BM microenvironment during G-CSF treatment. First, HPC (CFU-C) mobilization by G-CSF (125μg/kg/dose, every 12 hours, 8 divided doses) was significantly augmented in microsomal PGE syntase-1-deficient (mPGES-1-/-) mice (42% increase, n=16, p<0.05), and strongly inhibited by exogenous administration of PGE2 (6mg/kg/day for 2 weeks) to wild-type (WT) mice (52%, n=8-9 p<0.05). These data suggest that G-CSF induces mPGES-1-mediated PGE2 production, which suppresses the HPC mobilization. In the early phase (at 4 doses) of G-CSF administration, mPGES-1 mRNA in BM cells was upregulated (34% increase, n=5, p<0.05). Furthermore, WT mice reconstituted with mPGES-1-/- BM showed higher HPC mobilization than control mice reconstituted with mPGES-1+/+ BM (2.2-fold increase, n=4, p<0.05), which indicated that blood cells might be responsible for additional PGE2 synthesis. To address this, we examined the PGE2 production by ELISA from various lineage cell lines, such as neutrophil precursor 32D, macrophage RAW264.7, B cell Ba/F3, and T cell EL4. No increase was observed by G-CSF in any cell lines; whereas, isoproterenol induced PGE2 production significantly only in 32D culture supernatant (2.4-fold increase compared to vehicle treatment, n=4, p<0.05) accompanied with drastic increase of mPGES-1 mRNA in the cells and norepinephrine showed a similar effect. Primary neutrophils sorted from the BM also demonstrated prompt PGE2 production by isoproterenol (3-fold increase compared to vehicle treatment, n=4, p<0.05) but not by G-CSF. These data suggest that G-CSF-triggered high sympathetic tone stimulates the BM neutrophils to lead PGE2 production. We next assessed the exact roles of PGE2 in HPC mobilization. The inhibitory effect of PGE2 on HPC mobilization was completely abrogated in PGE2 receptor EP4-deficient (EP4-/-) mice, and the chimeric model generated by the reciprocal BM transplantation revealed that it was EP4 in microenvironment, but not in hematopoietic cells, that was critical for this effect. Since PGE2 did not change the CXCL12 behavior, we speculated that PGE2 increased another anchor in the niche, osteopontin (OPN). Immunofluorescence staining demonstrated upregulation of OPN by PGE2 and/or G-CSF in the endosteum, which was abolished in EP4-/- mice. Indeed, the inhibitory effect of PGE2 on HPC mobilization was canceled partially in OPN-/- mice and almost completely in anti-OPN antibody-treated WT mice. PGE2 also inhibited AMD3100-induced HPC mobilization, and this effect was canceled by anti-OPN antibody, which confirmed that PGE2-mediated niche modulation was independent of CXCL12 axis. To assess the induction of OPN by PGE2 directly, we fractionated non-hematopoietic (CD45-CD31-Ter119-) cells isolated from adult femur into three populations, i.e. Sca-1+ALCAM- immature mesenchymal cells, Sca-1-ALCAM- preosteoblasts that favorably support HPCs, and Sca-1-ALCAM+ mature osteoblasts that are most potent to maintain quiescent HSCs in vitro. PGE2 upregulated the OPN protein 2-fold in Sca-1+ALCAM- immature mesenchymal cells in cultures and more dramatically (6-fold) in Sca-1-ALCAM- preosteoblasts as assessed by flow cytometry. In sharp contrast, no OPN induction was observed in Sca-1-ALCAM+ mature osteoblasts. PGE2 failed to induce OPN in all three fractions from EP4-/- mice. In contrast to HPCs, the mobilization of long-term (6 months) repopulating HSCs was not altered in mPGES-1-/- and in PGE2-treated WT mice. This was consistent with the OPN induction profile in fractionated osteoblasts. These results suggest that PGE2 selectively regulates the osteoblastic niche for hematopoietic progenitors, but not for stem cells, by the induction of OPN via EP4 receptor. Collectively, we propose the inter-communication between the mature hematopoietic cells and the niche for their immature progenitors governed by the sympathetic nervous system. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 100 (1-2) ◽  
pp. 27-31 ◽  
Author(s):  
Yong Y Jiao ◽  
Shi Y Guo ◽  
Teruyasu Umezawa ◽  
Mayumi Okada ◽  
Tadashi Hisamitsu

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1211
Author(s):  
Jin-Sook Kwon ◽  
Eric W. Barr ◽  
J. Kurt Chuprun ◽  
Walter J. Koch

When myocardial function is compromised as in heart failure (HF), there is activation of the sympathetic nervous system with elevated circulating catecholamine levels. These catecholamines activate cardiac and extra-cardiac adrenergic receptors (ARs). Interest in secreted extracellular vesicles (EVs) from the heart is growing and in HF, it is not known whether excessive activation of α- or β-adrenergic receptors (ARs) could induce specific changes in EV content. In this study, we have evaluated, by next generation sequencing, the small RNA content, including micro-RNAs (miRs), of circulating EVs of mice exposed to chronic selective α- or β- AR stimulation. EVs from mouse blood were purified by differential ultracentrifugation resulting in EVs with an average size of 116.6 ± 4.8 nm that by immunoblotting included protein markers of EVs. We identified the presence of miRs in blood EVs using miR-21-5p and -16-5p real-time PCR as known constituents of blood exosomes that make up a portion of EVs. We next performed next generation sequencing (NGS) of small non-coding RNAs found in blood EVs from mice following 7 days of chronic treatment with isoproterenol (ISO) or phenylephrine (PE) to stimulate α- or β-ARs, respectively. PE increased the percent of genomic repeat region reads and decreased the percent of miR reads. In miR expression analysis, PE and ISO displayed specific patterns of miR expression that suggests differential pathway regulation. The top 20 KEGG pathways predicted by differential expressed miRs show that PE and ISO share 11 of 20 pathways analyzed and reveal also key differences including three synapse relative pathways induced by ISO relative to PE treatment. Both α-and β-AR agonists can alter small RNA content of circulating blood EVs/exosomes including differential expression and loading of miRs that indicate regulation of distinct pathways. This study provides novel insight into chronic sympathetic nervous system activation in HF where excessive catecholamines may not only participate in pathological remodeling of the heart but alter other organs due to secretion of EVs with altered miR content.


Sign in / Sign up

Export Citation Format

Share Document