Expansion of chicken erythrocyte nuclei upon limited micrococcal nuclease digestion Correlation with higher order chromatin structure

1982 ◽  
Vol 140 (1) ◽  
pp. 63-70 ◽  
Author(s):  
J HYDE
1984 ◽  
Vol 219 (1) ◽  
pp. 165-171 ◽  
Author(s):  
L Schiaffonati ◽  
L Bardella ◽  
G Cairo ◽  
V Giancotti ◽  
A Bernelli-Zazzera

Nuclei isolated from the liver of rats undergoing an acute inflammatory reaction induced by turpentine treatment show increased RNA synthesis. This increase is essentially determined by a faster polyribonucleotide-elongation rate while the number of transcribing polymerase molecules is unchanged. The sensitivity of chromatin to micrococcal-nuclease digestion and the composition of chromosomal proteins are not affected by the acute-phase process. Therefore the increased RNA synthesis by liver nuclei from acutely inflamed rats does not seem to correlate with major changes in chromatin structure.


1989 ◽  
Vol 260 (3) ◽  
pp. 697-704 ◽  
Author(s):  
R D Snyder

HeLa cells depleted of polyamines by treatment with alpha-difluoromethylornithine (DFMO), methylglyoxal bis(guanylhydrazone) (MGBG) or a combination of the two, were examined for sensitivity to micrococcal nuclease, DNAase I and DNAase II. The degrees of chromatin accessibility to DNAase I and II appeared enhanced somewhat in all three treatment groups, and the released digestion products differed from those in non-depleted cells. DNA released from MGBG- and DFMO/MGBG-treated cells by DNAase II digestion was enriched 4-7-fold for Mg2+-soluble species relative to controls. DNA released by micrococcal nuclease digestion from all three treatment groups was characterized as consisting of higher-order nucleosomal structure than was DNA released from untreated cells. At least some of the altered chromatin properties were abolished by a brief treatment of cells with polyamines, notably spermine. These studies provide the first demonstration in vivo of altered chromatin structure in cells treated with inhibitors of polyamine biosynthesis.


2005 ◽  
Vol 25 (24) ◽  
pp. 11156-11170 ◽  
Author(s):  
Natalia P. Ulyanova ◽  
Gavin R. Schnitzler

ABSTRACT Human SWI/SNF (hSWI/SNF) is an evolutionarily conserved ATP-dependent chromatin remodeling complex required for transcriptional regulation and cell cycle control. The regulatory functions of hSWI/SNF are correlated with its ability to create a stable, altered form of chromatin that constrains fewer negative supercoils than normal. Our current studies indicate that this change in supercoiling is due to the conversion of up to one-half of the nucleosomes on polynucleosomal arrays into asymmetric structures, termed “altosomes,” each composed of two histone octamers and bearing an asymmetrically located region of nuclease-accessible DNA. Altosomes can be formed on chromatin containing the abundant mammalian linker histone H1 and have a unique micrococcal nuclease digestion footprint that allows their position and abundance on any DNA sequence to be measured. Over time, altosomes spontaneously revert to structurally normal but improperly positioned nucleosomes, suggesting a novel mechanism for transcriptional attenuation as well as transcriptional memory following hSWI/SNF action.


1982 ◽  
Vol 57 (1) ◽  
pp. 151-160
Author(s):  
K.L. Barnes ◽  
R.A. Craigie ◽  
P.A. Cattini ◽  
T. Cavalier-Smith

We have isolated a crude nuclear preparation from the unicellular red alga Porphyridium aerugineum and investigated the structure of Porphyridium chromatin. Electrophoresis of deproteinized DNA fragments produced by micrococcal nuclease digestion of Porphyridium nuclei gives a typical ladder pattern, indicative of a repeating structure. The DNA repeat-length, calculated from plots of multimer length against multimer number, varies somewhat between different digestions, ranging from 160 to 180 base-pairs (average 173). We interpret this as evidence of heterogeneity in repeat-length; the calculated repeat-length depends on the extent of digestion because chromatin sub-populations with longer repeat-lengths are on average digested earlier. Polyacrylamide/sodium dodecyl sulphate gel electrophoresis of basic proteins purified from Porphyridium nuclear preparations gives a pattern characteristic of core histones. Although our interpretation is complicated by some degradation, the result strongly suggests that Porphyridium chromatin contains each of the four core histones and that they are similar to those of higher eukaryotes. This, together with the micrococcal nuclease digestion results, demonstrates that Porphyridium chromatin is not fundamentally different from that of higher eukaryotes.


PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e15754 ◽  
Author(s):  
Ho-Ryun Chung ◽  
Ilona Dunkel ◽  
Franziska Heise ◽  
Christian Linke ◽  
Sylvia Krobitsch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document