nucleosomal structure
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 0)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Ya-Hui Chi ◽  
Wan-Ping Wang ◽  
Ming-Chun Hung ◽  
Gunn-Guang Liou ◽  
Jing-Ya Wang ◽  
...  

AbstractThe cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFβ1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFβ1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, clustering at the nuclear periphery and reintegrating into the nucleoplasm. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFβ1-induced compositional changes in the chromatin and nuclear lamina.


2021 ◽  
Vol 35 (21-22) ◽  
pp. 1403-1430
Author(s):  
Andrej Alendar ◽  
Anton Berns

Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.


2021 ◽  
Author(s):  
Kathryn Piston ◽  
Michael Cosgrove ◽  
Shikha Nangia

Abstract Histone tails are integral structural and functional components of the eukaryotic nucleosome. These tails, rich in positively charged amino acid residues, interact with the DNA to stabilize the nucleosomal structure. However, capturing the biochemical effects of posttranslational modifications (PTMs) on histone tails in molecular detail using X-ray or NMR techniques remains a challenge due to their intrinsically disordered structure. In this work, we studied the N-terminal portion of the H3 histone protein, a 38-residue tail, that when posttranslationally modified, is implicated in altering the tail’s interaction with the DNA, affecting nucleosomal stability. Using all-atom molecular dynamics simulations for a total of 35 microseconds, we investigated the structure and dynamics of the wildtype H3 tail and seven known nucleosomal PTMs. Based on residues’ contacts with DNA, water, and ions, dihedral angle analysis, and root-mean-square fluctuations of the tail residues, our results show that the H3 tail has a tripartite segmental nature. The three segments, labeled I, II, and III, are separated by the proline residues P16, P30, and P38. A comparison of wildtype H3 tail and proline-to-alanine-mutated H3 tail showed that the prolines function as segmental dividers or hinges of the H3 tail. We show that Segment I is more dynamic than Segments II and III, and Segment I makes multiple transient contacts with the DNA. The PTMs affect the tail’s dynamics to different extents, but the tripartite segmental nature of the tail is preserved. Notably, single-residue modification of the lysine by acetylation or methylations in Segment I versus multiple residue modifications by serine phosphorylation or lysine methylations have marked effects on the tail’s flexibility and interaction with the DNA. This study highlights the significance of proline residues in creating the segmental behavior of the H3 tail.


2021 ◽  
Author(s):  
Ya-Hui Chi ◽  
Wan-Ping Wang ◽  
Ming-Chun Hung ◽  
Gunn-Guang Liou ◽  
Jing-Ya Wang ◽  
...  

Abstract The cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFb1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFb1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed with no observable indications of DNA damage response. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, shuttling between the nucleus and cytoplasm, and clustering at the nuclear periphery. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFb1-induced compositional changes in the chromatin and nuclear lamina.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2239
Author(s):  
Chang-Hui Shen ◽  
James Allan

The compact nucleosomal structure limits DNA accessibility and regulates DNA-dependent cellular activities. Linker histones bind to nucleosomes and compact nucleosomal arrays into a higher-order chromatin structure. Recent developments in high throughput technologies and structural computational studies provide nucleosome positioning at a high resolution and contribute to the information of linker histone location within a chromatosome. However, the precise linker histone location within the chromatin fibre remains unclear. Using monomer extension, we mapped core particle and chromatosomal positions over a core histone-reconstituted, 1.5 kb stretch of DNA from the chicken adult β-globin gene, after titration with linker histones and linker histone globular domains. Our results show that, although linker histone globular domains and linker histones display a wide variation in their binding affinity for different positioned nucleosomes, they do not alter nucleosome positions or generate new nucleosome positions. Furthermore, the extra ~20 bp of DNA protected in a chromatosome is usually symmetrically distributed at each end of the core particle, suggesting linker histones or linker histone globular domains are located close to the nucleosomal dyad axis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aydan Bulut-Karslioglu ◽  
Hu Jin ◽  
Yun-Kyo Kim ◽  
Brandon Cho ◽  
Marcela Guzman-Ayala ◽  
...  

AbstractStem and progenitor cells undergo a global elevation of nascent transcription, or hypertranscription, during key developmental transitions involving rapid cell proliferation. The chromatin remodeler Chd1 mediates hypertranscription in pluripotent cells but its mechanism of action remains poorly understood. Here we report a novel role for Chd1 in protecting genome integrity at promoter regions by preventing DNA double-stranded break (DSB) accumulation in ES cells. Chd1 interacts with several DNA repair factors including Atm, Parp1, Kap1 and Topoisomerase 2β and its absence leads to an accumulation of DSBs at Chd1-bound Pol II-transcribed genes and rDNA. Genes prone to DNA breaks in Chd1 KO ES cells are longer genes with GC-rich promoters, a more labile nucleosomal structure and roles in chromatin regulation, transcription and signaling. These results reveal a vulnerability of hypertranscribing stem cells to accumulation of endogenous DNA breaks, with important implications for developmental and cancer biology.


2021 ◽  
Author(s):  
Ya-Hui Chi ◽  
Wan-Ping Wang ◽  
Ming-Chun Hung ◽  
Gunn-Guang Liou ◽  
Jing-Ya Wang ◽  
...  

Abstract The cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFb1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFb1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed with no observable indications of DNA damage response. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, shuttling between the nucleus and cytoplasm, and clustering at the nuclear periphery. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFb1-induced compositional changes in the chromatin and nuclear lamina.


2021 ◽  
Author(s):  
Ya-Hui Chi ◽  
Wan-Ping Wang ◽  
Ming-Chun Hung ◽  
Gunn-Guang Liou ◽  
Jing-Ya Wang ◽  
...  

Abstract The cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFβ1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFβ1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed with no observable indications of DNA damage response. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, shuttling between the nucleus and cytoplasm, and clustering at the nuclear periphery. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFβ1-induced compositional changes in the chromatin and nuclear lamina.


Author(s):  
Renato Paro ◽  
Ueli Grossniklaus ◽  
Raffaella Santoro ◽  
Anton Wutz

AbstractThis chapter provides an introduction to chromatin. We will examine the organization of the genome into a nucleosomal structure. DNA is wrapped around a globular complex of 8 core histone proteins, two of each histone H2A, H2B, H3, and H4. This nucleosomal arrangement is the context in which information can be established along the sequence of the DNA for regulating different aspects of the chromosome, including transcription, DNA replication and repair processes, recombination, kinetochore function, and telomere function. Posttranslational modifications of histone proteins and modifications of DNA bases underlie chromatin-based epigenetic regulation. Enzymes that catalyze histone modifications are considered writers. Conceptually, erasers remove these modifications, and readers are proteins binding these modifications and can target specific functions. On a larger scale, the 3-dimensional (3D) organization of chromatin in the nucleus also contributes to gene regulation. Whereas chromosomes are condensed during mitosis and segregated during cell division, they occupy discrete volumes called chromosome territories during interphase. Looping or folding of DNA can bring regulatory elements including enhancers close to gene promoters. Recent techniques facilitate understanding of 3D contacts at high resolution. Lastly, chromatin is dynamic and changes in histone occupancy, histone modifications, and accessibility of DNA contribute to epigenetic regulation.


Author(s):  
Renato Paro ◽  
Ueli Grossniklaus ◽  
Raffaella Santoro ◽  
Anton Wutz

AbstractThe nucleus of a eukaryotic cell is a very busy place. Not only during replication of the DNA, but at any time in the cell cycle specific enzymes need access to genetic information to process reactions such as transcription and DNA repair. Yet, the nucleosomal structure of chromatin is primarily inhibitory to these processes and needs to be resolved in a highly orchestrated manner to allow developmental, organismal, and cell type-specific nuclear activities. This chapter explains how nucleosomes organize and structure the genome by interacting with specific DNA sequences. Variants of canonical histones can change the stability of the nucleosomal structure and also provide additional epigenetic layers of information. Chromatin remodeling complexes work locally to alter the regular beads-on-a-string organization and provide access to transcription and other DNA processing factors. Conversely, factors like histone chaperones and highly precise templating and copying mechanisms are required for the reassembly of nucleosomes and reestablishment of the epigenetic landscape after passage of activities processing DNA sequence information. A very intricate molecular machinery ensures a highly dynamic yet heritable chromatin template.


Sign in / Sign up

Export Citation Format

Share Document