asymmetric structures
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 73)

H-INDEX

23
(FIVE YEARS 4)

BMC Zoology ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Josefine Kreuz ◽  
Monika J. B. Eberhard

Abstract Background Asymmetries are a widespread phenomenon in otherwise bilaterally symmetric organisms, and investigation of asymmetric structures can help us gather insights into fundamental evolutionary processes such as the selection for morphological novelties caused by behavioural changes. In insects, asymmetric genitalia have evolved in almost every order, and usually it’s the sclerotized parts and most conspicuous male phallic organs that are known to exhibit asymmetries. While external copulatory organs in insects have often been subject to investigations concerning asymmetries and the evolution thereof, internal reproductive structures have received far less attention. Here we describe the internal and external male genitalia in three species of Austrophasmatidae, Mantophasmatodea, using μ-CT imaging and light microscopy. Mantophasmatodea is the most recently discovered insect order, and with 21 species described to date, it is among the smallest insect orders currently known. Results We confirm that male heelwalkers exhibit asymmetries in the external genitalia and associated structures, represented by asymmetric phallic lobes and cerci. Moreover, we found an extreme asymmetry within the internal male genitalia: in all adult males investigated (N = 5), the seminal vesicle, a dilatation of the vas deferens, was only developed on the right side of the male while missing on the left side. Conclusion The false-male-above mating position exhibited by Mantophasmatodea and especially the long copulation duration of ca. 3 days might select for this unusual absence asymmetry of the left seminal vesicle. If this holds true for all heelwalker species, this absence asymmetry constitutes another autapomorphy for Austrophasmatidae or even the insect order Mantophasmatodea.


2021 ◽  
Vol 9 (2) ◽  
pp. 174-185
Author(s):  
Ehud Ben Zvi

The goal of this article is to draw attention to a seemingly strange, generative pattern that, at times and under certain conditions, has shaped socially shared worlds of imagination among subordinate groups within imperial or hierarchically asymmetric structures of power, especially among “retainer” groups who saw themselves as a “cultural elite” of the subordinate group. I am referring to a generative pattern that in a significant number of such groups, across time and space, has led to constructions of worlds of imagination, and vicarious participation in them through readings or other social acts of imagination that involved “bracketing the empire out.” The article focuses on the world of the literati of late Persian Yehud/Judah, and especially the bracketing out of Ramat Rahel, the most obvious and monumental, explicit, imperial site in the province, but a number of various examples from diverse historical and geographical contexts are also brought to bear to make a point that this is a well-instantiated pattern. The article then concludes with a discussion of what was often gained by acts of imagination and memory involved in bracketing out “empire” and under which circumstances such acts tended to be historically likely.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Yufeng Luo ◽  
Shihao Han ◽  
Rui Hu ◽  
Hongmei Yuan ◽  
Wenyan Jiao ◽  
...  

In recent years, the Janus monolayers have attracted tremendous attention due to their unique asymmetric structures and intriguing physical properties. However, the thermal stability of such two-dimensional systems is less known. Using the Janus monolayers SnXY (X, Y = O, S, Se) as a prototypical class of examples, we investigate their structure evolutions by performing ab-initio molecular dynamics (AIMD) simulations at a series of temperatures. It is found that the system with higher thermal stability exhibits a smaller difference in the bond length of Sn–X and Sn–Y, which is consistent with the orders obtained by comparing their electron localization functions (ELFs) and atomic displacement parameters (ADPs). In principle, the different thermal stability of these Janus structures is governed by their distinct anharmonicity. On top of these results, we propose a simple rule to quickly predict the maximum temperature up to which the Janus monolayer can stably exist, where the only input is the ADP calculated by the second-order interatomic force constants rather than time-consuming AIMD simulations at various temperatures. Furthermore, our rule can be generalized to predict the thermal stability of other Janus monolayers and similar structures.


Author(s):  
Nesta Joseph ◽  
Saswata Roy ◽  
Awadhesh Narayan

Abstract Janus transition metal dichalcogenides, with intrinsic mirror asymmetry, exhibit a wide array of interesting properties. In this work, we study Janus monolayers derived from WTe2 using first-principles and tight-binding calculations. We discover that WSeTe and WSTe are topologically trivial, in contrast to the parent quantum spin Hall insulator WTe2. Motivated by the growing interest in non-linear Hall effect, which also requires asymmetric structures, we investigate the Berry curvature and its dipole in these Janus systems and find that they exhibit strikingly large values of Berry curvature dipole, despite being in the topologically trivial phase. We track down the origin of this behaviour and put forth a low-energy massive Dirac model to understand the central features of our ab inito computations. Our predictions introduce Janus monolayers as promising new platforms for exploring as well as engineering non-linear Hall effect.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bai Xue ◽  
Yi Li ◽  
Ziling Cheng ◽  
Shengdu Yang ◽  
Lan Xie ◽  
...  

AbstractSome precision electronics such as signal transmitters need to not only emit effective signal but also be protected from the external electromagnetic (EM) waves. Thus, directional electromagnetic interference (EMI) shielding materials (i.e., when the EM wave is incident from different sides of the sample, the EMI shielding effectiveness (SE) is rather different) are strongly required; unfortunately, no comprehensive literature report is available on this research field. Herein, Ni-coated melamine foams (Ni@MF) were obtained by a facile electroless plating process, and multiwalled carbon nanotube (CNT) papers were prepared via a simple vacuum-assisted self-assembly approach. Then, step-wise asymmetric poly(butylene adipate-co-terephthalate) (PBAT) composites consisting of loose Ni@MF layer and compact CNT layer were successfully fabricated via a facile solution encapsulation approach. The step-wise asymmetric structures and electrical conductivity endow the Ni@MF/CNT/PBAT composites with unprecedented directional EMI shielding performances. When the EM wave is incident from Ni@MF layer or CNT layer, Ni@MF-5/CNT-75/PBAT exhibits the total EMI SE (SET) of 38.3 and 29.5 dB, respectively, which illustrates the ΔSET of 8.8 dB. This work opens a new research window for directional EMI shielding composites with step-wise asymmetric structures, which has promising applications in portable electronics and next-generation communication technologies.


2021 ◽  
Author(s):  
Ellen J Coombs ◽  
Ryan N Felice

Three-dimensional measurements of morphology are key to gaining an understanding of a species' biology and to answering subsequent questions regarding the processes of ecology (or palaeoecology), function, and evolution. However, the collection of morphometric data is often focused on methods designed to produce data on bilaterally symmetric morphologies which may mischaracterise asymmetric structures. Using 3D landmark and curve data on 3D surface meshes of specimens, we present a method for first quantifying the level of asymmetry in a specimen and second, accurately capturing the morphology of asymmetric specimens for further geometric analyses. We provide an example of the process from initial landmark placement, including details on how to place landmarks to quantify the level of asymmetry, and then on how to use this information to accurately capture the morphology of asymmetric morphologies or structures. We use toothed whales (odontocetes) as a case study and include examples of the consequences of mirroring landmarks and curves, a method commonly used in bilaterally symmetrical specimens, on asymmetric specimens. We conclude by presenting a step-by-step method to collecting 3D landmark data on asymmetric specimens. Additionally, we provide code for placing landmarks and curves on asymmetric specimens in a manner designed to both save time and ultimately accurately quantify morphology. This method can be used as a first crucial step in morphometric analyses of any biological specimens by assessing levels of asymmetry and then if required, accurately quantifying this asymmetry. The latter not only saves the researcher time, but also accurately represents the morphology of asymmetric structures.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7249
Author(s):  
Jagabar Sathik ◽  
Shady H. E. Abdel Aleem ◽  
Rasoul Shalchi Alishah ◽  
Dhafer Almakhles ◽  
Kent Bertilsson ◽  
...  

This paper presents a new multilevel converter with a reduced number of power components for medium voltage applications. Both symmetric and asymmetric structures of the presented multilevel converter are proposed. The symmetric topology requires equal dc source values, whereas the asymmetric topology uses minimum switch count. However, both structures suffer from high blocking voltage across the switches. To reduce the blocking voltage on switches, an optimal topology is presented and analyzed for the selection of the minimum number of switches and dc sources, while maintaining a low blocking voltage across the switches. A comparative analysis with recently published topologies was performed. The simulation results, as well as the comparative analysis, validated the robustness and effectiveness of the proposed topology in terms of the reduced power loss, lowered number of components, and cost. Furthermore, in addition to the simulation results, the performance of the proposed topology was verified using experimental results of 9, 17, and 25 levels.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ning Wang ◽  
Xiaoning Huang ◽  
Dan Zhang

The seismic response of reinforced concrete (RC) plan-asymmetric structures is significantly influenced by the input angle of seismic ground motions. Hence, it is challenging to assess the performance of plan-asymmetric structures. In this study, the classic probabilistic seismic fragility assessment method is used to assess RC plan-asymmetric wall-frame structures based on the enhanced damage model. First, the worst-case input angle of seismic ground motions for plan-asymmetric structures is identified using the wavelet transforms coefficient method, considering the coupling of bidirectional seismic ground motions. Accordingly, the maximum deformation and hysteretic energy dissipation can be determined. Then, an enhanced damage model, which is based on the combination of deformation and hysteretic energy dissipation, is used to identify floor damage factor. Note that the importance coefficients of structural components are considered in the identification. Meanwhile, the incremental dynamic analysis (IDA) is conducted to create the fragility curves by assuming floor damage factor as seismic performance index. In particular, the randomness of the threshold for floor damage factor is considered during the assessment. Afterwards, numerical simulations are employed to verify the fragility assessment method. Results show that the wavelet transforms coefficient method can evaluate the worst-case input angles with low time-consuming and high efficiency. Meanwhile, the story damage factors confirmed that the proposed damage model could accurately assess the structure during the failure process. Moreover, the typical failure modes of the RC wall-frame structure, which significantly depend on the story damage distribution, can be defined using the enhanced damage model. Note that the randomness of the threshold could significantly affect the probability of exceedance, which is important for fragility analysis.


2021 ◽  
Vol 921 (2) ◽  
pp. 169
Author(s):  
Kazuhiro D. Kanagawa ◽  
Takayuki Muto ◽  
Hidekazu Tanaka

Abstract Relatively large dust grains (referred to as pebbles) accumulate at the outer edge of the gap induced by a planet in a protoplanetary disk, and a ring structure with a high dust-to-gas ratio can be formed. Such a ring has been thought to be located immediately outside the planetary orbit. We examined the evolution of the dust ring formed by a migrating planet, by performing two-fluid (gas and dust) hydrodynamic simulations. We found that the initial dust ring does not follow the migrating planet and remains at the initial location of the planet in cases with a low viscosity of α ∼ 10−4. The initial ring is gradually deformed by viscous diffusion, and a new ring is formed in the vicinity of the migrating planet, which develops from the trapping of the dust grains leaking from the initial ring. During this phase, two rings coexist outside the planetary orbit. This phase can continue over ∼1 Myr for a planet migrating from 100 au. After the initial ring disappears, only the later ring remains. This change in the ring morphology can provide clues as to when and where the planet was formed, and is the footprint of the planet. We also carried out simulations with a planet growing in mass. These simulations show more complex asymmetric structures in the dust rings. The observed asymmetric structures in the protoplanetary disks may be related to a migrating and growing planet.


2021 ◽  
Vol 889 (1) ◽  
pp. 012043
Author(s):  
Kamalroop Kaur ◽  
Balwinder Singh

Abstract Behavior of multistory structures during solid seismic tremor relies on the underlying configurations.Irregularities are not avoidable in development of structures in light of the fact that the space accessible for building the structures are restricted consequently the structure with irregularity is built up more, because of these abnormalities in the structure damages are more during earthquake.The effect of lateral load as wind/Earthquakes influences the performance of these constructions significantly. For the stability against seismic forces of multi-celebrated structure, there is need to investigation of seismic examination to plan earthquake opposition structures. It was tracked down that principle reason for failure of RC building is due to irregular circulations of load, plan of the structures, strength, stiffness. In this paper the correlation of seismic behavior of G+15 story structures having plan irregularities was finished utilizing ETAB programming. For this reason different multi-storey structure plans are viewed as that are regular plan without shear wall, regular plan with shear wall, L shape without shear wall, L shape with shear wall, irregular plan of C shape without shear wall, irregular plan of C shape with shear wall structures. For the correlation, boundaries taken are displacement, story float and storey shear. Every one of the six structures was dissected for zone V. The fundamental objective is to contemplate the behavior of both symmetric and Asymmetric structures during seismic tremor having abnormalities in plan but the plan area is same. The another aim of the study is to examine the taken boundaries like storey shear, storey displacements, Maximum storey float of all structures that are build in this paper during seismic tremor and also to study the impact of shear wall on the behavior of different structures.


Sign in / Sign up

Export Citation Format

Share Document