Changes of intracellular and externally bound cations accompanying serum stimulation of mouse BALB/c 3T3 cells

1982 ◽  
Vol 139 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Hisashi Sanui ◽  
Harry Rubin
1987 ◽  
Vol 7 (6) ◽  
pp. 2080-2086
Author(s):  
D I Linzer ◽  
E L Wilder

The serum-inducible expression of proliferin genes in BALB/c 3T3 cells was found to be dependent on both protein synthesis and an extended presence of serum in the medium. Even though no mature proliferin mRNA was detected in serum-starved cells, transcription of the proliferin genes occurred in these resting-cell cultures, indicating that posttranscriptional events may be important for regulating proliferin mRNA levels. These results suggest that protein synthesis after serum stimulation of quiescent mouse fibroblasts is required for posttranscriptional processing or stabilization of proliferin RNA. Proliferin RNA levels were found to be heterogeneous among serum-stimulated cells analyzed by in situ hybridization. This heterogeneity is probably due to asynchrony in the population and may point to a correlation between the time of proliferin expression and the time of entry of a cell into S phase.


1987 ◽  
Vol 7 (6) ◽  
pp. 2080-2086 ◽  
Author(s):  
D I Linzer ◽  
E L Wilder

The serum-inducible expression of proliferin genes in BALB/c 3T3 cells was found to be dependent on both protein synthesis and an extended presence of serum in the medium. Even though no mature proliferin mRNA was detected in serum-starved cells, transcription of the proliferin genes occurred in these resting-cell cultures, indicating that posttranscriptional events may be important for regulating proliferin mRNA levels. These results suggest that protein synthesis after serum stimulation of quiescent mouse fibroblasts is required for posttranscriptional processing or stabilization of proliferin RNA. Proliferin RNA levels were found to be heterogeneous among serum-stimulated cells analyzed by in situ hybridization. This heterogeneity is probably due to asynchrony in the population and may point to a correlation between the time of proliferin expression and the time of entry of a cell into S phase.


1987 ◽  
Vol 7 (1) ◽  
pp. 523-527 ◽  
Author(s):  
D W Stacey ◽  
T Watson ◽  
H F Kung ◽  
T Curran

Microinjection of p21ras induced c-fos protein accumulation in three types of 3T3 cells. The induction was rapid and efficient and persisted for many hours. In addition, anti-ras antibody dramatically reduced c-fos accumulation after serum stimulation of injected cells. However, cells which expressed p21ras continuously did not maintain a high level of c-fos expression.


1991 ◽  
Vol 11 (9) ◽  
pp. 4466-4472 ◽  
Author(s):  
K Kovary ◽  
R Bravo

The expression of different members of the Jun and Fos families of transcription factors is rapidly induced following serum stimulation of quiescent fibroblasts. To determine whether these proteins are required for cell cycle progression, we microinjected affinity-purified antibodies directed against c-Fos, FosB, Fra-1, c-Jun, JunB, and JunD, and antibodies that recognize either the Fos or the Jun family of proteins, into Swiss 3T3 cells and determined their effects in cell cycle progression by monitoring DNA synthesis. We found that microinjection of anti-Fos and anti-Jun family antibodies efficiently blocked the entrance to the S phase of serum-stimulated or asynchronously growing cells. However, the antibodies against single members of the Fos family only partially inhibited DNA synthesis. In contrast, all three Jun antibodies prevented DNA synthesis more effectively than did any of the anti-Fos antibodies.


1987 ◽  
Vol 7 (1) ◽  
pp. 523-527
Author(s):  
D W Stacey ◽  
T Watson ◽  
H F Kung ◽  
T Curran

Microinjection of p21ras induced c-fos protein accumulation in three types of 3T3 cells. The induction was rapid and efficient and persisted for many hours. In addition, anti-ras antibody dramatically reduced c-fos accumulation after serum stimulation of injected cells. However, cells which expressed p21ras continuously did not maintain a high level of c-fos expression.


1991 ◽  
Vol 11 (5) ◽  
pp. 2451-2459 ◽  
Author(s):  
K Kovary ◽  
R Bravo

We have characterized the expression of c-Jun, JunB, JunD, c-Fos, and FosB proteins following serum stimulation of quiescent Swiss 3T3 cells by immunoprecipitation analyses. The synthesis of the three Jun proteins rapidly increases following stimulation, remaining at a significant level for at least 8 h. JunB protein presents the highest expression of all. FosB, like c-Fos, is transiently induced. Pulse-chase experiments show that all of the proteins except JunD are short-lived. We have shown that c-Fos and FosB form complexes in vivo with the different Jun proteins and that JunB complexes are predominant. In vitro association and competition experiments show that the affinities between the different Fos and Jun proteins are similar. This finding, together with the in vivo observations described above, suggests that the proportion of the different Jun/Fos heterodimers is governed by the concentration of the different components. The Fos and Jun proteins are phosphoproteins, and some remain relatively highly phosphorylated in their heterodimeric form.


1992 ◽  
Vol 12 (11) ◽  
pp. 5015-5023
Author(s):  
K Kovary ◽  
R Bravo

We have determined the different Fos/Jun complexes present in Swiss 3T3 cells either following serum stimulation of quiescent cells or during exponential growth by immunoprecipitation analyses. We have shown that while c-Fos is the major Fos protein associated with the Jun proteins (c-Jun, JunB, and JunD) soon after serum stimulation, at later times Fra-1 and Fra-2 are the predominant Fos proteins associated with the different Jun proteins. During exponential growth, the synthesis of Fra-1 and Fra-2 is maintained at a significant level, in contrast to c-Fos and FosB, which are expressed at very low or undetectable levels. Consequently, Fra-1 and Fra-2 are the main Fos proteins complexed with the Jun proteins in asynchronously growing cells. To determine whether the Fos proteins are differentially required during the G0-to-G1 transition and exponential growth for the entrance into S phase, we microinjected affinity-purified antibodies directed against c-Fos, FosB, Fra-1, and Fra-2. We have found that while the activities of c-Fos and FosB are required mostly during the G0-to-G1 transition, Fra-1 and Fra-2 are involved both in the G0-to-G1 transition and in asynchronous growth.


Sign in / Sign up

Export Citation Format

Share Document