Control of proliferin gene expression in serum-stimulated mouse cells

1987 ◽  
Vol 7 (6) ◽  
pp. 2080-2086
Author(s):  
D I Linzer ◽  
E L Wilder

The serum-inducible expression of proliferin genes in BALB/c 3T3 cells was found to be dependent on both protein synthesis and an extended presence of serum in the medium. Even though no mature proliferin mRNA was detected in serum-starved cells, transcription of the proliferin genes occurred in these resting-cell cultures, indicating that posttranscriptional events may be important for regulating proliferin mRNA levels. These results suggest that protein synthesis after serum stimulation of quiescent mouse fibroblasts is required for posttranscriptional processing or stabilization of proliferin RNA. Proliferin RNA levels were found to be heterogeneous among serum-stimulated cells analyzed by in situ hybridization. This heterogeneity is probably due to asynchrony in the population and may point to a correlation between the time of proliferin expression and the time of entry of a cell into S phase.

1987 ◽  
Vol 7 (6) ◽  
pp. 2080-2086 ◽  
Author(s):  
D I Linzer ◽  
E L Wilder

The serum-inducible expression of proliferin genes in BALB/c 3T3 cells was found to be dependent on both protein synthesis and an extended presence of serum in the medium. Even though no mature proliferin mRNA was detected in serum-starved cells, transcription of the proliferin genes occurred in these resting-cell cultures, indicating that posttranscriptional events may be important for regulating proliferin mRNA levels. These results suggest that protein synthesis after serum stimulation of quiescent mouse fibroblasts is required for posttranscriptional processing or stabilization of proliferin RNA. Proliferin RNA levels were found to be heterogeneous among serum-stimulated cells analyzed by in situ hybridization. This heterogeneity is probably due to asynchrony in the population and may point to a correlation between the time of proliferin expression and the time of entry of a cell into S phase.


1991 ◽  
Vol 11 (9) ◽  
pp. 4466-4472 ◽  
Author(s):  
K Kovary ◽  
R Bravo

The expression of different members of the Jun and Fos families of transcription factors is rapidly induced following serum stimulation of quiescent fibroblasts. To determine whether these proteins are required for cell cycle progression, we microinjected affinity-purified antibodies directed against c-Fos, FosB, Fra-1, c-Jun, JunB, and JunD, and antibodies that recognize either the Fos or the Jun family of proteins, into Swiss 3T3 cells and determined their effects in cell cycle progression by monitoring DNA synthesis. We found that microinjection of anti-Fos and anti-Jun family antibodies efficiently blocked the entrance to the S phase of serum-stimulated or asynchronously growing cells. However, the antibodies against single members of the Fos family only partially inhibited DNA synthesis. In contrast, all three Jun antibodies prevented DNA synthesis more effectively than did any of the anti-Fos antibodies.


1992 ◽  
Vol 12 (11) ◽  
pp. 5015-5023
Author(s):  
K Kovary ◽  
R Bravo

We have determined the different Fos/Jun complexes present in Swiss 3T3 cells either following serum stimulation of quiescent cells or during exponential growth by immunoprecipitation analyses. We have shown that while c-Fos is the major Fos protein associated with the Jun proteins (c-Jun, JunB, and JunD) soon after serum stimulation, at later times Fra-1 and Fra-2 are the predominant Fos proteins associated with the different Jun proteins. During exponential growth, the synthesis of Fra-1 and Fra-2 is maintained at a significant level, in contrast to c-Fos and FosB, which are expressed at very low or undetectable levels. Consequently, Fra-1 and Fra-2 are the main Fos proteins complexed with the Jun proteins in asynchronously growing cells. To determine whether the Fos proteins are differentially required during the G0-to-G1 transition and exponential growth for the entrance into S phase, we microinjected affinity-purified antibodies directed against c-Fos, FosB, Fra-1, and Fra-2. We have found that while the activities of c-Fos and FosB are required mostly during the G0-to-G1 transition, Fra-1 and Fra-2 are involved both in the G0-to-G1 transition and in asynchronous growth.


1977 ◽  
Vol 91 (3) ◽  
pp. 429-440 ◽  
Author(s):  
Joseph T. Tupper ◽  
Flavia Zorgniotti ◽  
Barry Mills

1992 ◽  
Vol 12 (11) ◽  
pp. 5015-5023 ◽  
Author(s):  
K Kovary ◽  
R Bravo

We have determined the different Fos/Jun complexes present in Swiss 3T3 cells either following serum stimulation of quiescent cells or during exponential growth by immunoprecipitation analyses. We have shown that while c-Fos is the major Fos protein associated with the Jun proteins (c-Jun, JunB, and JunD) soon after serum stimulation, at later times Fra-1 and Fra-2 are the predominant Fos proteins associated with the different Jun proteins. During exponential growth, the synthesis of Fra-1 and Fra-2 is maintained at a significant level, in contrast to c-Fos and FosB, which are expressed at very low or undetectable levels. Consequently, Fra-1 and Fra-2 are the main Fos proteins complexed with the Jun proteins in asynchronously growing cells. To determine whether the Fos proteins are differentially required during the G0-to-G1 transition and exponential growth for the entrance into S phase, we microinjected affinity-purified antibodies directed against c-Fos, FosB, Fra-1, and Fra-2. We have found that while the activities of c-Fos and FosB are required mostly during the G0-to-G1 transition, Fra-1 and Fra-2 are involved both in the G0-to-G1 transition and in asynchronous growth.


1991 ◽  
Vol 11 (9) ◽  
pp. 4466-4472
Author(s):  
K Kovary ◽  
R Bravo

The expression of different members of the Jun and Fos families of transcription factors is rapidly induced following serum stimulation of quiescent fibroblasts. To determine whether these proteins are required for cell cycle progression, we microinjected affinity-purified antibodies directed against c-Fos, FosB, Fra-1, c-Jun, JunB, and JunD, and antibodies that recognize either the Fos or the Jun family of proteins, into Swiss 3T3 cells and determined their effects in cell cycle progression by monitoring DNA synthesis. We found that microinjection of anti-Fos and anti-Jun family antibodies efficiently blocked the entrance to the S phase of serum-stimulated or asynchronously growing cells. However, the antibodies against single members of the Fos family only partially inhibited DNA synthesis. In contrast, all three Jun antibodies prevented DNA synthesis more effectively than did any of the anti-Fos antibodies.


1988 ◽  
Vol 8 (8) ◽  
pp. 3080-3087
Author(s):  
C W Schweinfest ◽  
S Fujiwara ◽  
L F Lau ◽  
T S Papas

The human c-myc oncogene was linked to the heat shock-inducible Drosophila hsp70 promoter and used to stably transfect mouse BALB/c 3T3 cells. Heat shock of the transfectants at 42 degrees C followed by recovery at 37 degrees C resulted in the appearance of the human c-myc protein which was appropriately localized to the nuclear fraction. Two-dimensional analysis of the proteins of density-arrested cells which had been heat shock treated revealed the induction of eight protein species and the repression of five protein species. All of the induced and repressed proteins were nonabundant. cDNA clones corresponding to genes induced during the G0/G1 transition were used as probes to assay for c-myc inducibility of these genes. Two anonymous sequences previously identified as serum inducible (3CH77 and 3CH92) were induced when c-myc was expressed. In response to serum stimulation, 3CH77 and 3CH92 were expressed before c-myc mRNA levels increased. However, in response to specific induction of c-myc by heat shock of serum arrested cells, 3CH77 and 3CH92 mRNA levels increased after the rise in c-myc mRNA. Therefore, we hypothesize that abnormal expression of c-myc can induce genes involved in the proliferative response.


Reproduction ◽  
2017 ◽  
Vol 153 (5) ◽  
pp. 683-694 ◽  
Author(s):  
Xiaowei Lu ◽  
Song Guo ◽  
Yuan Cheng ◽  
Jae-hong Kim ◽  
Yi Feng ◽  
...  

Previous studies showed that the protein kinase B (Akt)–mammalian target of rapamycin (mTOR) and Hippo signaling Yes-associated protein (YAP) pathways play important roles in promoting follicle growth. Additionally, other studies demonstrated that 5′ adenosine monophosphate-activated protein kinase (AMPK) is an upstream regulatory element of mTOR and YAP. Here, we used AMPK inhibitor (Compound C) toin vitrocultured ovaries from 10-day-old mice followed byin vivografting into adult hosts or toin situtreated ovaries of 3-week-old mice by intrabursal injection followed by gonadotropin stimulation. We found that the phosphorylation of ovarian mTOR and downstream proteins (ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4B (eIF4B)) was upregulated following Compound C administration, whereas tuberous sclerosis complex 2 (TSC2) phosphorylation was downregulated. Additionally, treatment with Compound C increased hypoxia-inducible factor 1-alpha (Hif1a), vascular endothelial growth factor A (Vegfa), VEGF receptor 2 (Vegfr2) and connective tissue growth factor (Ctgf) mRNA levels. Furthermore, treatment of 10-day-old mice with Compound C promoted the growth of preantral and antral follicles accompanied by enhanced angiogenesis.In situintrabursal injection with Compound C, followed by controlled ovarian hyperstimulation, increased the number of ovulated oocytes in 3-week-old mice, and these oocytes could be successfully fertilized, leading to the delivery of healthy pups. Our results demonstrated that treatment with AMPK inhibitor resulted in the activation of the mTOR signaling pathway, increases inCtgfexpression in mouse ovaries, stimulation of follicle development and promotion of ovarian angiogenesis for ovary growth.


Sign in / Sign up

Export Citation Format

Share Document