Effects of accumulation of phosphocreatine on utilization and restoration of high-energy phosphates during anoxia and recovery in thin hippocampal slices from the guinea pig

1983 ◽  
Vol 82 (1) ◽  
pp. 215-222 ◽  
Author(s):  
Kazushi Yoneda ◽  
Toshio Arakawa ◽  
Yoshinori Asaoka ◽  
Yoshihiro Fukuoka ◽  
Kazuhiro Kinugasa ◽  
...  
1989 ◽  
Vol 28 (1-2) ◽  
pp. 83-91 ◽  
Author(s):  
Tim S. Whittingham ◽  
Eduardo Warman ◽  
Hussein Assaf ◽  
Thomas J. Sick ◽  
Joseph C. LaManna

1997 ◽  
Vol 272 (2) ◽  
pp. H913-H920 ◽  
Author(s):  
M. W. Gorman ◽  
M. X. He ◽  
C. S. Hall ◽  
H. V. Sparks

This study evaluated cytosolic P(i) as an independent regulator of cardiac adenosine formation by dissociating changes in P(i) from changes in AMP and ADP. Myocardial high-energy phosphates (HEP), measured by (31)P nuclear magnetic resonance spectroscopy, were depleted acutely by perfusing isolated guinea pig hearts with 2-deoxyglucose (2-DG), and the effects of 2-DG were compared with a norepinephrine infusion producing similar changes in HEP. 2-DG treatment resulted in lower adenosine release (R(ado)) (54 +/- 18 vs. 622 +/- 199 pmol x min(-1) x g(-1)) and P(i) concentration ([P(i)]) (0.5 +/- 0.1 vs. 6.0 +/- 0.9 mM) than norepinephrine despite similar AMP concentration ([AMP]). Chronic phosphocreatine depletion produced by beta-guanidinopropionic acid feeding also reduced R(ado) and P(i) during hypoxia. Replacement of perfusate glucose and pyruvate with acetate increased R(ado) (from 39 +/- 12 to 356 +/- 100 pmol x min(-1) x g(-1)) and [P(i)] (from 2.0 +/- 0.5 to 5.1 +/- 0.6 mM) with no change in cytosolic [AMP]. Adenosine kinase isolated from guinea pig hearts was inhibited by [P(i)] values seen during hypoxia or hypoperfusion. We conclude that cytosolic [P(i)] can be an important regulator of cardiac adenosine formation through inhibition of adenosine kinase.


1993 ◽  
Vol 265 (4) ◽  
pp. H1249-H1256 ◽  
Author(s):  
G. S. Sandhu ◽  
A. C. Burrier ◽  
D. R. Janero

We investigated the effect of the adenosine deaminase inhibitors erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and coformycin on high-energy phosphate metabolism, tissue nucleotides and nucleosides, and recovery of contractile function in isolated, perfused guinea pig hearts. EHNA and coformycin (10 microM) improved postischemic recovery of contractile function approximately 85% and enhanced coronary flow rate in reperfused tissue approximately 40%. The protective effect of EHNA on recovery of contractile function was concentration dependent. Although adenosine (10 microM) increased coronary flow rate on reperfusion approximately twofold over vehicle, it failed to improve postischemic recovery of contractile function. EHNA and coformycin preserved cardiac ATP levels and increased endogenous tissue adenosine during ischemia. During reperfusion, these agents enhanced recovery of high-energy phosphates approximately twofold and potentiated adenosine release into the perfusate with concentration dependency. Furthermore, EHNA and coformycin reduced the extent of myocardial ischemia-reperfusion injury, as indicated by the approximately 55% reduction in creatine phosphokinase release. We conclude that inhibitors of adenosine deaminase attenuate myocardial ischemic injury and improve postischemic recovery of contractile function and metabolism through endogenous myocardial adenosine enhancement and ATP preservation.


Sign in / Sign up

Export Citation Format

Share Document