Assessment of peripheral nerve crush injury with cortical somatosensory evoked potentials in the cat

1989 ◽  
Vol 103 (2) ◽  
pp. 146-153 ◽  
Author(s):  
Yoriko Kawakami ◽  
Hidehiro Suzuki ◽  
Willie K. Dong
2009 ◽  
Vol 454 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Maorong Jiang ◽  
Xiaoming Zhuge ◽  
Yumin Yang ◽  
Xiaosong Gu ◽  
Fei Ding

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Liang Shu ◽  
Jingjing Su ◽  
Lingyan Jing ◽  
Ying Huang ◽  
Yu Di ◽  
...  

Renshaw recurrent inhibition (RI) plays an important gated role in spinal motion circuit. Peripheral nerve injury is a common disease in clinic. Our current research was designed to investigate the change of the recurrent inhibitory function in the spinal cord after the peripheral nerve crush injury in neonatal rat. Sciatic nerve crush was performed on 5-day-old rat puppies and the recurrent inhibition between lateral gastrocnemius-soleus (LG-S) and medial gastrocnemius (MG) motor pools was assessed by conditioning monosynaptic reflexes (MSR) elicited from the sectioned dorsal roots and recorded either from the LG-S and MG nerves by antidromic stimulation of the synergist muscle nerve. Our results demonstrated that the MSR recorded from both LG-S or MG nerves had larger amplitude and longer latency after neonatal sciatic nerve crush. The RI in both LG-S and MG motoneuron pools was significantly reduced to virtual loss (15–20% of the normal RI size) even after a long recovery period upto 30 weeks after nerve crush. Further, the degree of the RI reduction after tibial nerve crush was much less than that after sciatic nerve crush indicatig that the neuron-muscle disconnection time is vital to the recovery of the spinal neuronal circuit function during reinnervation. In addition, sciatic nerve crush injury did not cause any spinal motor neuron loss but severally damaged peripheral muscle structure and function. In conclusion, our results suggest that peripheral nerve injury during neonatal early development period would cause a more sever spinal cord inhibitory circuit damage, particularly to the Renshaw recurrent inhibition pathway, which might be the target of neuroregeneration therapy.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Akira Ikumi ◽  
Yuki Hara ◽  
Eriko Okano ◽  
Sho Kohyama ◽  
Norihito Arai ◽  
...  

The digital nerves are important for normal hand function. In addition to conventional therapies such as neurolysis, direct repair, and auto/allografts, new treatments administering growth factors and cells for promoting nerve regeneration exist. Platelet-rich plasma (PRP), an autologous product with proven therapeutic effects for musculoskeletal disorders, is a new treatment option for peripheral nerve injury. We hypothesized that PRP could stimulate healing of digital nerve injuries. In the current case report, intraoperative local administration of PRP was performed during neurolysis surgery for a healthy 28-year-old woman with digital nerve crush injury. Five weeks postinjury, surgery was performed due to severe uncontrollable neuropathic pain and no sensory nerve action potential derivation of the index finger. Therapeutic effects were assessed by physical examination, visual analog scale for pain, and nerve conduction study. Postoperatively, early neuropathic pain relief and good functional recovery were obtained with no PRP-related adverse events. This case report demonstrates the therapeutic potential of intraoperative PRP to enhance the healing process of nerve crush injury in the acute phase and to decrease the neuropathic pain, thus enhancing healing of peripheral nerve crush injury.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2618
Author(s):  
Mi-Sun Kang ◽  
Gil-Hyun Lee ◽  
Go-Eun Choi ◽  
Hae-Gyung Yoon ◽  
Kyung-Yae Hyun

Peripheral nerve injury can result in severe functional impairment and decreased quality of life due to loss of sensory and motor function. Nypa fruticans wurmb (NF) has been used in diverse folk remedies in East Asia. We have previously shown that Nypa fruticans wurmb extract has antinociceptive and anti-inflammatory effects by suppressing TRPV1 in the sciatic nerve injury. The present study investigated the effects of NF on the control of TRPV1 in relation to neuroprotective effects of a sciatic nerve crush injury. To evaluate the neuroprotective effects, an animal behavior test and a physiological function test were performed. Functional recovery and nerve recovery were improved in the NF and NF + SB (SB366791; TRPV1 antagonist) treated group. In the histomorphology evaluation, the neuronal regenerative effect of NF on the injured sciatic nerve was confirmed via hematoxylin and eosin (H&E) staining. In this study, the NF and NF + SB treated group showed neuroprotective and functional recovery effects from the sciatic nerve crush injury. Furthermore, the expression of NF-κB and iNOS showed a significantly suppressive effect on NF (p < 0.01), SB (p < 0.01), and NF + SB (p < 0.01) treated group at the 7th and 14th day compared to the vehicle group. This study confirmed the neuroprotective effects of NF on suppressing TRPV1 in a sciatic nerve crush injury. The findings of this study establish the effect of NF as a neurotherapeutic agent to protect the peripheral nerve after a sciatic nerve crush injury.


2010 ◽  
Vol 191 (2) ◽  
pp. 277-282 ◽  
Author(s):  
Serife Gokce Zencirci ◽  
Mehmet Dincer Bilgin ◽  
Halil Yaraneri

Sign in / Sign up

Export Citation Format

Share Document