The roles of protein kinase C and cyclic nucleotide dependent kinase in signal transduction in human interferon γ induction by poly I:poly C

FEBS Letters ◽  
1989 ◽  
Vol 248 (1-2) ◽  
pp. 73-77 ◽  
Author(s):  
Motoko Tamura-Nishimura ◽  
Shigeru Sasakawa
1992 ◽  
Vol 76 (4) ◽  
pp. 635-639 ◽  
Author(s):  
Shigeru Nishizawa ◽  
Nobukazu Nezu ◽  
Kenichi Uemura

✓ Vascular contraction is induced by the activation of intracellular contractile proteins mediated through signal transduction from the outside to the inside of cells. Protein kinase C plays a crucial role in this signal transduction. It is hypothesized that protein kinase C plays a causative part in the development of vasospasm after subarachnoid hemorrhage (SAH). To verify this directly, the authors measured protein kinase C activity in canine basilar arteries in an SAH model with (γ-32P)adenosine triphosphate and the data were compared to those in a control group. Protein kinase C is translocated to the membrane from the cytosol when it is activated, and the translocation is an index of the activation; thus, protein kinase C activity was measured both in the cytosol and in the membrane fractions. Protein kinase C activity in the membrane in the SAH model was remarkably enhanced compared to that in the control group. The percentage of membrane activity to the total was also significantly greater in the SAH vessels than in the control group, and the percentage of cytosol activity in the SAH group was decreased compared to that in the control arteries. The results indicate that protein kinase C in the vascular smooth muscle was translocated to the membrane from the cytosol and was activated when SAH occurred. It is concluded that this is direct evidence for a key role of protein kinase C in the development of vasospasm.


1991 ◽  
Vol 261 (5) ◽  
pp. F896-F903 ◽  
Author(s):  
V. M. Vehaskari ◽  
J. Herndon ◽  
L. L. Hamm

Epidermal growth factor (EGF) inhibits Na transport in the cortical collecting ducts (CCD). To gain insight into the signal transduction of this effect, several potential mechanisms were examined in rabbit CCD perfused in vitro. Pretreatment with pertussis toxin, indomethacin, or the protein kinase C inhibitor H7 did not prevent the acute 34-50% decrease in lumen-to-bath 22Na flux (JNa) on exposure to peritubular EGF, indicating that the inhibition is not mediated by a Gi protein, prostaglandin E2 (PGE2), or protein kinase C. Inhibition of the basolateral Na-H exchanger was also without an effect. Lowering the bath Ca concentration from 1.2 to 0.11 mM did not prevent the inhibition of JNa by EGF (JNa decreased significantly by 38.7 +/- 6.9% and 29.1 +/- 5.3%, respectively); in contrast, reduction of the bath free Ca to 0.005 mM totally abolished the effect of EGF. The response to EGF was also assessed in the setting of chronic stimulation of Na transport; inhibition of JNa by EGF was still observed in CCD from remnant kidneys and in CCD from mineralocorticoid-treated rabbits. The results demonstrate that the inhibition of CCD Na transport by EGF is dependent on peritubular Ca. This suggests that the signal transduction involves Ca influx across the basolateral membrane and that increased cytosolic free Ca may be a common pathway for the counterregulatory control of Na reabsorption by several agonists.


Sign in / Sign up

Export Citation Format

Share Document