Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon

1991 ◽  
Vol 101 (2) ◽  
pp. 331-338 ◽  
Author(s):  
Nicola Mascolo ◽  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder
1999 ◽  
Vol 276 (1) ◽  
pp. G132-G137 ◽  
Author(s):  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

Na depletion inhibits electroneutral Na-Cl absorption in intact tissues and Na/H exchange in apical membrane vesicles (AMV) of rat distal colon. Two anion (Cl/HCO3 and Cl/OH) exchanges have been identified in AMV from surface cells of rat distal colon. To determine whether Cl/HCO3 and/or Cl/OH exchange is responsible for vectorial Cl movement, this study examined the spatial distribution and the effect of Na depletion on anion-dependent 36Cl uptake by AMV in rat distal colon. These studies demonstrate that HCO3 concentration gradient-driven36Cl uptake (i.e., Cl/HCO3 exchange) is 1) primarily present in AMV from surface cells and 2) markedly reduced by Na depletion. In contrast, OH concentration gradient-driven36Cl uptake (i.e., Cl/OH exchange) present in both surface and crypt cells is not affected by Na depletion. In Na-depleted animals HCO3 also stimulates36Cl via Cl/OH exchange with low affinity. These results suggest that Cl/HCO3 exchange is responsible for vectorial Cl absorption, whereas Cl/OH exchange is involved in cell volume and/or cell pH homeostasis.


1993 ◽  
Vol 264 (5) ◽  
pp. G874-G879 ◽  
Author(s):  
V. M. Rajendran ◽  
H. J. Binder

This study describes Cl-HCO3 and Cl-OH exchanges as the mechanism for Cl uptake by apical membrane vesicles (AMV) of rat distal colon. Although HCO3 gradient-stimulated 36Cl uptake was additionally stimulated by the additional presence of a pH gradient, pH gradient-stimulated 36Cl uptake was not further enhanced by a HCO3 gradient. HCO3 gradient-stimulated and OH gradient-stimulated 36Cl uptake was not inhibited by voltage clamping, with K and its ionophore valinomycin, but was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, an anion exchange inhibitor, with an apparent inhibitory constant of 7.8 and 106.0 microM, respectively. Increasing intravesicular OH concentration in the absence of HCO3 (with fixed extravesicular Cl concentration) yielded a sigmoidal curve for 36Cl uptake. In contrast, increasing intravesicular OH concentration in the presence of equimolar intra- and extravesicular HCO3 (25 mM) yielded a saturable hyperbolic curve. Increasing extravesicular Cl concentration saturated both HCO3 gradient-stimulated and OH gradient-stimulated 36Cl uptake, with a kinetic constant for Cl of approximately 11.9 and 22.6 mM, respectively. We conclude that Cl uptake in AMV of rat distal colon occurs via two separate anion (Cl-HCO3 and Cl-OH) exchange processes. We speculate that one of these two anion exchanges may be responsible for transcellular Cl movement, while the other may be important in the regulation of intracellular pH homeostasis.


2004 ◽  
Vol 287 (3) ◽  
pp. C612-C621 ◽  
Author(s):  
Sadasivan Vidyasagar ◽  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

HCO3−secretion has long been recognized in the mammalian colon, but it has not been well characterized. Although most studies of colonic HCO3−secretion have revealed evidence of lumen Cl−dependence, suggesting a role for apical membrane Cl−/HCO3−exchange, direct examination of HCO3−secretion in isolated crypt from rat distal colon did not identify Cl−-dependent HCO3−secretion but did reveal cAMP-induced, Cl−-independent HCO3−secretion. Studies were therefore initiated to determine the characteristics of HCO3−secretion in isolated colonic mucosa to identify HCO3−secretion in both surface and crypt cells. HCO3−secretion was measured in rat distal colonic mucosa stripped of muscular and serosal layers by using a pH stat technique. Basal HCO3−secretion (5.6 ± 0.03 μeq·h−1·cm−2) was abolished by removal of either lumen Cl−or bath HCO3−; this Cl−-dependent HCO3−secretion was also inhibited by 100 μM DIDS (0.5 ± 0.03 μeq·h−1·cm−2) but not by 5-nitro-3-(3-phenylpropyl-amino)benzoic acid (NPPB), a Cl−channel blocker. 8-Bromo-cAMP induced Cl−-independent HCO3−secretion (and also inhibited Cl−-dependent HCO3−secretion), which was inhibited by NPPB and by glibenclamide, a CFTR blocker, but not by DIDS. Isobutyrate, a poorly metabolized short-chain fatty acid (SCFA), also induced a Cl−-independent, DIDS-insensitive, saturable HCO3−secretion that was not inhibited by NPPB. Three distinct HCO3−secretory mechanisms were identified: 1) Cl−-dependent secretion associated with apical membrane Cl−/HCO3−exchange, 2) cAMP-induced secretion that was a result of an apical membrane anion channel, and 3) SCFA-dependent secretion associated with an apical membrane SCFA/HCO3−exchange.


1995 ◽  
Vol 195 (1) ◽  
pp. 333-342 ◽  
Author(s):  
Oliver Schröder ◽  
Ralf Gerhard ◽  
Wolfgang F. Caspary ◽  
Jürgen Stein

1995 ◽  
Vol 108 (3) ◽  
pp. 673-679 ◽  
Author(s):  
Jürgen Stein ◽  
Oliver Schröder ◽  
Vladan Milovic ◽  
Wolfgang F. Caspary

Sign in / Sign up

Export Citation Format

Share Document