The effect of phosphatase inhibitors on myosin light chain phosphorylation and relaxation in guinea pig gallbladder and urinary bladder smooth muscle

1994 ◽  
Vol 107 (4) ◽  
pp. 1221 ◽  
Author(s):  
R.J. Washabau ◽  
N. Zhukovskaya
2005 ◽  
Vol 125 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Mari Ekman ◽  
Katarina Fagher ◽  
Mia Wede ◽  
Karolina Stakeberg ◽  
Anders Arner

Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 ± 0.01, 1.14 ± 0.12, and 1.31 ± 0.08 mM. Force of the newborn tissue was inhibited by ∼45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 ± 0.07, 5.77 ± 0.08, and 5.55 ± 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase–induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.


2010 ◽  
Vol 298 (5) ◽  
pp. C1118-C1126 ◽  
Author(s):  
Masaru Watanabe ◽  
Masatoshi Yumoto ◽  
Hideyuki Tanaka ◽  
Hon Hui Wang ◽  
Takeshi Katayama ◽  
...  

To explore the precise mechanisms of the inhibitory effects of blebbistatin, a potent inhibitor of myosin II, on smooth muscle contraction, we studied the blebbistatin effects on the mechanical properties and the structure of contractile filaments of skinned (cell membrane permeabilized) preparations from guinea pig taenia cecum. Blebbistatin at 10 μM or higher suppressed Ca2+-induced tension development at any given Ca2+ concentration but had little effects on the Ca2+-induced myosin light chain phosphorylation. Blebbistatin also suppressed the 10 and 2.75 mM Mg2+-induced, “myosin light chain phosphorylation-independent” tension development at more than 10 μM. Furthermore, blebbistatin induced conformational change of smooth muscle myosin (SMM) and disrupted arrangement of SMM and thin filaments, resulting in inhibition of actin-SMM interaction irrespective of activation with Ca2+. In addition, blebbistatin partially inhibited Mg2+-ATPase activity of native actomyosin from guinea pig taenia cecum at around 10 μM. These results suggested that blebbistatin suppressed skinned smooth muscle contraction through disruption of structure of SMM by the agent.


1991 ◽  
Vol 260 (6) ◽  
pp. G920-G924 ◽  
Author(s):  
R. J. Washabau ◽  
M. B. Wang ◽  
C. L. Dorst ◽  
J. P. Ryan

These experiments were designed to characterize the effect of muscle length on isometric stress, sensitivity to stimulation, and phosphorylation of the 20,000-Da myosin light chains in guinea pig gallbladder smooth muscle. Basal, active, and total isometric stress were determined in acetylcholine- or K(+)-treated (10(-4) M ACh, 80 mM KCl) muscle strips at 0.6-1.3 times the optimal muscle length (Lo) for isometric stress development. The effect of muscle length on the sensitivity to ACh and K+ was determined in cumulative dose-response experiments (10(-8) to 10(-4) M ACh, 10-80 mM KCl) at 0.7, 1.0, and 1.3 Lo. The effect of muscle length on myosin light chain phosphorylation was determined in ACh- or K(+)-treated (10(-4) M ACh, 80 mM KCl) muscle strips at 0.7, 1.0, and 1.3 Lo. In gallbladder smooth muscle, 1) active isometric stresses at 0.7 and 1.3 Lo were less than active isometric stress at 1.0 Lo; 2) the sensitivity of developed stress was similar at 1.0 and 1.3 Lo but decreased at 0.7 Lo; 3) the decline in isometric stress and sensitivity at 0.7 Lo was associated with reduced levels of phosphorylated myosin light chain; and 4) the decline in isometric stress at 1.3 Lo was not associated with reduced amounts of phosphorylated myosin light chain. These results suggest that the decline in active stress and sensitivity at short muscle lengths (L less than Lo) in gallbladder smooth muscle is due, at least in part, to decreases in the activation of the myofilaments. The decline in active isometric stress at long muscle lengths (L greater than Lo) is not due to changes in myofilament activation.


2003 ◽  
Vol 26 (8) ◽  
pp. 1192-1194 ◽  
Author(s):  
Yoshio Tanaka ◽  
Takao Okamoto ◽  
Toshiyasu Imai ◽  
Takahiro Horinouchi ◽  
Hikaru Tanaka ◽  
...  

2005 ◽  
Vol 39 (2) ◽  
pp. 108-116 ◽  
Author(s):  
Pasquale Chitano ◽  
Charles L. Worthington ◽  
Janet A. Jenkin ◽  
Newman L. Stephens ◽  
Sylvia Gyapong ◽  
...  

1991 ◽  
Vol 261 (6) ◽  
pp. G952-G957
Author(s):  
R. J. Washabau ◽  
M. B. Wang ◽  
J. P. Ryan

These experiments were designed to determine 1) whether acetylcholine (ACh) stimulation is accompanied by changes in myosin light chain phosphorylation in gallbladder smooth muscle and 2) whether dephosphorylated noncycling cross bridges (latch bridges) exist in gallbladder smooth muscle. Isometric stress, isotonic shortening velocity, and myosin light chain phosphorylation were determined under conditions of contraction and relaxation in ACh-stimulated guinea pig gallbladder smooth muscle. Unstimulated muscle contained 6.8 +/- 2.0% phosphorylated myosin light chain. ACh stimulation (5 x 10(-5) or 10(-4) M) was associated with a rapid increase in myosin light chain phosphorylation to a value that was maintained throughout the tonic contraction. In contrast, isotonic shortening velocity was maximal at 30 s of stimulation and then declined over time to a steady-state level that was 25-30% of the peak velocity. Upon agonist washout (relaxation), dephosphorylation of the myosin light chain occurred at about the same rate as the decline in shortening velocity and preceded the decline in isometric stress. These data suggest that ACh stimulation is accompanied by changes in myosin light chain phosphorylation but that dephosphorylation of cross bridges is not necessary for the slowing of cross-bridge cycling rates in gallbladder smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document