Stable isotopic investigations of early development in extant and fossil chambered cephalopods I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus

1985 ◽  
Vol 49 (12) ◽  
pp. 2527-2532 ◽  
Author(s):  
Kimberley C. Crocker ◽  
Michael J. DeNiro ◽  
Peter D. Ward
2005 ◽  
Vol 142 (6) ◽  
pp. 723-733 ◽  
Author(s):  
QING-JUN GUO ◽  
HARALD STRAUSS ◽  
CONG-QIANG LIU ◽  
YUAN-LONG ZHAO ◽  
DAO-HUI PI ◽  
...  

Secular variations in the carbon isotopic composition of organic and carbonate carbon characterize the Lower to Middle Cambrian transition that is exposed on the Yangtze Platform at Taijiang, Guizhou Province, southern China. δ13C values for organic matter range between −33.4 and −26.5‰. The carbon isotopic composition for carbonate carbon fluctuates between −2.7 and +3.1‰. A progressive decrease in the isotopic difference (Δδ) between these two isotope records reflects a decrease in the proportional contribution of bacterial biomass to the total sedimentary organic matter. In general, the observed changes are interpreted to reflect primary depositional values, notably variations in the burial rates of organic matter. These, in turn, are linked to biological changes across the Lower to Middle Cambrian transition. No distinct shift in the carbon isotopic composition marks the proposed Lower–Middle Cambrian boundary.


2006 ◽  
Vol 66 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Christoph Spötl ◽  
Augusto Mangini

AbstractCalcitic flowstones are present in fractures of a Pleistocene breccia near Innsbruck, Austria, and record periods of carbonate precipitation in the unsaturated zone between 101,500 ± 1500 and 70,300 ± 1800 yr, constrained by U-series disequilibrium dates. The occurrence of these speleothems, their low carbon isotopic composition, and the lack of infiltrated siliciclastic material demonstrate that the central Inn valley – which harbored one of the most extensive valley glaciers during the last glacial maximum – was ice-free during Marine Isotope Stages 5c to 5a. Climatically warm periods are separated by distinct drops in the oxygen isotopic composition of the speleothem calcite, attributed to strong and possibly seasonally biased atmospheric cooling. During these intervening stadials, which mirror those identified in the Greenland ice cores and marine sea-surface temperature records, calcite deposition apparently came to a halt, but the Inn Valley remained ice-free. The youngest calcite layer formed between ∼74,000 and ∼70,000 yr and places a maximum age limit on the likely expansion of alpine glaciers during the Marine Isotope Stage 5/4 transition, consistent with other speleothem records.


2016 ◽  
Vol 20 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Keke Huang ◽  
Xiaoning Li ◽  
Zuowei Hu ◽  
Yijiang Zhong

<p>The late Permian thermal events related to Emeishan Basalt has made a great impact on the underlying carbonate rock properties in the western margin of the Yangtze Platform. In this paper, we investigate the carbon and oxygen isotopic composition of the Qixia Formation carbonates from two sections: the Qiaoting Section in the northeastern part of the Sichuan Basin and the Changjianggou Section at the northwestern edge of the Basin. The data reveal that: (i) Samples from Qiaoting section show a relatively narrow range of δ<sup>13</sup>C and δ<sup>18</sup>O, varying from 2.7‰ to 5.2‰ with an average of 4.2‰, and -3.8‰ to -7.8‰ with an average of -5.4‰, respectively. In contrast, Samples from Changjianggou section exhibit larger magnitude of variation in δ<sup>13</sup>C and δ<sup>18</sup>O, ranging from -1‰ to 3.8‰ with an average of 1.5‰, and -2.1 to -9.2‰, with an average of -6.0‰ respectively; (ii) δ<sup>13</sup>C and δ<sup>18</sup>O records in carbonates from Qiaoting section are similar to those of Middle Permian seawater whereas carbonates from the Changjianggou section are depleted in <sup>13</sup>C and <sup>18</sup>O compared to contemporary seawater; (iii) On the basis of combined petrographic and paleo-heat flow evidence, the lower carbon and oxygen isotopic composition of the carbonates from the Changjianggou section are interpreted to be the results of thermal effects of Emeishan Basalt because of its proximity to the eruption center of the basalt. The high temperature reduced the δ<sup>18</sup>O values of the carbonates and forced the organic matter to mature at an early stage, thus producing <sup>13</sup>C-enriched carbon dioxide to participate in the formation of carbonates.  </p><p> </p><p><strong>Composición Isotópica de Oxígeno y Carbón en Rocas de Carbonato de la Formación de Edad Pérmica Qixia, en la Cuenca de Sichuan: Efectos Térmicos del Basalto Emeishan  </strong></p><p><strong><br /></strong></p><p><strong>Resumen</strong></p><p>Los eventos térmicos del Pérmico tardío relacionados con el Basalto Emeishan han tenido un gran impacto en las propiedades de las rocas de carbonato subyacentes en el margen occidental de la plataforma Yangtze. En este artículo se investiga la composición isotópica de carbonatos de la formación Qixia en dos secciones: la sección de Qiaoting en la parte nororiental de la cuenca Sichuan y la sección Changjianggou, en el noroccidente de la cuenca. La información evidencia que, (i) las muestras de la sección Qiaoting tienen un espectro más angosto que va de δ<sup>13</sup>C a δ<sup>18</sup>O, con variación de 2.7 ‰ a 5,2 ‰, con un promedio de 4.2 ‰, y -3.8 ‰ a -7.8 ‰, con una media de -5.4 ‰, respectivamente. En contraste, las muestras de la sección Changjianggou tienen una variación de mayor magnitud en δ<sup>13</sup>C a δ<sup>18</sup>O que va desde -1 ‰ hasta 3.8 ‰, con un promedio de 1.5 ‰, y de -2.1 a -9.2 ‰, con una media de -6.0 ‰, respectivamente; (ii) los registros de δ<sup>13</sup>C y δ<sup>18</sup>O en carbonatos son similares a los de agua marina del pérmico medio, mientras que los carbonatos de la sección Changjianggou se ven empobrecidos en 13C y 18O comparados al agua marina de esta edad; con base en la petrografía combinada y la evidencia del flujo paleotérmico, la baja composición isotópica de oxígeno y carbón de los carbonatos en la sección de Changjianggou se interpretó como resultado de los efectos térmicos del Basalto Emeishan debido a la proximidad con el centro de erupción. La alta temperatura redujo los valores de δ<sup>18</sup>O de los carbonatos y llevó a la maduración temprana de la materia orgánica, lo que produjo dióxido de carbono enriquecido en <sup>13</sup>C durante la formación de los carbonatos.</p>


1992 ◽  
Vol 6 ◽  
pp. 163-163
Author(s):  
Fabien Kenig ◽  
Brian Popp ◽  
Roger Summons

To understand the processes controlling production, accumulation, and preservation of organic matter in the Lower Oxford Clay (LOC), we determined the hydrogen index (HI), the oxygen index (OI), the Tmax (from Rock-Eval), the content of total organic carbon (TOC), total carbon and total sulfur, and the carbon isotopic composition of bulk organic matter from 160 samples collected from 6 different quarries and one continuous core. With concentrations of TOC varying between 0.5% and 16.6%, the LOC is an organic-rich shale. For samples dominated by organic matter of phytoplanktonic origin, the hydrogen and oxygen indices and the Tmax (~418°) indicate low levels of maturity, and, thus, the shallow burial of the LOC through geologic time.Two main sources of organic matter can be distinguished: a major phytoplanktonic source with high HI and low OI and a minor terrestrial source with low HI and high OI. A third group, represented by samples with low HI and low OI, consists mainly of altered materials from the Middle Oxford Clay and the LOC. Selection of samples for chemical analysis was based on the macrofaunal assemblages defined by Duff (1975). These various biofacies are characterized by specific organic geochemical features indicating the relationship between conditions affecting faunal assemblages and those controlling accumulation and preservation of organic matter. For example, Duff's ‘deposit feeder shales', which are dominated by epifaunal bivalves and are depleted in infaunal organisms, exhibit the highest concentration and best preservation of marine organic matter, with an average TOC of 6.8% for 56 samples analyzed. The preservation of such organic matter requires a dysaerobic water column and a high sedimentation rate.Carbon isotopic compositions within the ‘deposit feeder shale’ biofacies (−27.6 to −23.2±) appear to have been controlled by the intensity of primary productivity. The highest-TOC, marine-dominated, 13C-rich samples reflect photosynthetic drawdown of dissolved-CO2 level, and, thus, originated in highly productive environments. On the other hand, variations in the carbon isotopic composition of organic matter in shell beds (−27.5 to −26±) probably reflect heterotrophic reworking of the organic matter, winnowing of the sediments, and mixing with a source of organic matter enriched in 13C, such as wood (δ13C from −25 to −23±). Such mixing phenomena may also explain the high variability of the carbon isotopic compositions of TOC-depleted and altered samples from the Middle and Upper Oxford Clay.The environment of deposition of the LOC would be characterized by the alternation of two major conditions: 1) periods of high productivity, dysoxic water column and high sedimentation rate leading to the development of organic-rich shales dominated by phytoplanktonic organic matter, and 2) periods of low productivity, oxic water column and high current activity implying winnowing and alteration of organic matter, and leading to the formation of shell beds where marine and terrestrial organic matter are mixed.


1996 ◽  
Vol 1 ◽  
pp. 249-291 ◽  
Author(s):  
Peter K. Swart ◽  
Jim J. Leder

There is a fundamental ecologic differentiation between zooxanthellate and non-zooxanthellate corals. This paper reviews factors which govern the stable carbon and oxygen isotopic composition of these groups of corals. Although the stable carbon and oxygen isotope compositions of coral skeletons are strongly influenced by environmental and physiological factors, the precise mechanisms remain a matter of debate. In particular the oxygen isotopic composition is known to be governed by the temperature and the oxygen isotopic composition of the water and perhaps also by kinetic factors. In contrast the carbon isotopic composition is controlled by a combination of photosynthesis, respiration, autotrophy, heterotrophy, and the isotopic composition of dissolved inorganic carbon. Using a combination of carbon and oxygen isotopes it is possible to distinguish zooxanthellate from non-zooxanthellate corals.


Sign in / Sign up

Export Citation Format

Share Document