Trace element and isotopic characteristics of western Pacific pelagic sediments: Implications for the petrogenesis of Mariana Arc magmas

1992 ◽  
Vol 56 (4) ◽  
pp. 1641-1654 ◽  
Author(s):  
Ping-Nan Lin
Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 394
Author(s):  
Richen Zhong ◽  
Min Zhang ◽  
Chang Yu ◽  
Hao Cui

A subduction zone plays a critical role in forging continental crust via formation of arc magmas, which are characteristically enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs). This trace element pattern results from the different mobilities of LILEs and HFSEs during slab-to-wedge mass transfer, but the mechanisms of trace element transfer from subducting crusts are not fully understood. In this study, thermodynamic simulations are carried out to evaluate the mobilities of K and Zr, as representative cases of LILE and HFSE, respectively, in slab fluids. The fluids buffered by basaltic eclogite can dissolve > 0.1 molal of K at sub-arc depths (~3 to 5.5 GPa). However, only minor amounts of K can be liberated by direct devolatilization of altered oceanic basalt, because sub-arc dehydration mainly takes place at temperatures < 600 °C (talc-out), wherein the fluid solubility of K is very limited (<0.01 molal). Therefore, serpentinite-derived fluids are required to flush K from the eclogite. The solubility of K can be enhanced by the addition of NaCl to the fluid, because fluid Na+ can unlock phengite-bonded K via a complex ion exchange. Finally, it is further confirmed that Zr and other HFSEs are immobile in slab fluids.


2021 ◽  
Author(s):  
◽  
Matthew Thomas Stevens

<p>The Coromandel Volcanic Zone (CVZ) was the longest-lived area of volcanism in New Zealand hosting the commencement of large explosive rhyolitic and ignimbrite forming eruptions. The NW trending Coromandel Peninsula is the subaerial remnant of the Miocene-Pliocene CVZ, which is regarded as a tectonic precursor to the Taupo Volcanic Zone (TVZ), currently the most dynamic and voluminous rhyolitic volcanic centre on Earth. This study presents new single glass shard major and trace element geochemical analyses for 72 high-silica volcanic tephra layers recovered from well-dated deep-sea sediments of the SW Pacific Ocean by the Ocean Drilling Program (ODP) Leg 181. ODP Site 1124, ~720 km south and east from the CVZ, penetrated sediments of the Rekohu Drift yielding an unprecedented record of major explosive volcanic eruptions owing to the favourable location and preservation characteristics at this site. This record extends onshore eruptive sequences of CVZ explosive volcanism that are obscured by poor exposure, alteration, and erosion and burial by younger volcanic deposits. Tephra layers recovered from Site 1124 are well-dated through a combination of biostratigraphic and palaeomagnetic methods allowing the temporal geochemical evolution of the CVZ to be reconstructed in relation to changes in the petrogenesis of CVZ arc magmas from ~ 10 to 2 Ma. This thesis establishes major and trace element geochemical "fingerprints" for all Site 1124-C tephras using well-established (wavelength dispersive electron probe microanalysis) and new (laser ablation inductively coupled plasma mass spectrometry) in situ single glass shard microanalytical techniques. Trace element analysis of Site 1124-C glass shards (as small as 20 um) demonstrate that trace element signatures offer a more specific, unequivocal characterisation for distinguishing (and potentially correlating) between tephras with nearly identical major element compositions. The Site 1124-C core contains 72 unaltered Miocene-Pliocene volcanic glass-shard-bearing laminae > 1 cm thick that correspond to 83 or 84 geochemical eruptive units. Revised eruptive frequencies based on the number of geochemical eruptive units identified represent at least one eruption every 99 kyr for the late Miocene and one per 74 kyr for the Pliocene. The frequency of tephra deposition throughout the history of the CVZ has not been constant, rather reflecting pulses of major explosive eruptions resulting in closely clustered groups of tephra separated by periods of reduced activity, relative volcanic quiescence or non-tephra deposition. As more regular activity became prevalent in the Pliocene, it was accompanied by more silicic magma compositions. Rhyolitic volcanic glass shards are characterised by predominantly calc-alkaline and minor high-K enriched major element compositions. Major element compositional variability of the tephras deposited between 10 Ma and 2 Ma reveals magma batches with pre-eruptive compositional gradients implying a broad control by fractional crystallisation. Trace element characterisation of glass shards reveals the role of magmatic processes that are not readily apparent in the relatively homogeneous major element compositions. Multi-element diagrams show prominent negative Sr and Ti anomalies against primitive mantle likely caused by various degrees of plagioclase and titanomagnetite fractional crystallisation in shallow magma chambers. Relative Nb depletion, characteristic of arc volcanism, is moderate in CVZ tephras. HFSEs (e.g. Nb, Zr, Ti) and HREEs (e.g. Yb, Lu) remain immobile during slab fluid flux suggesting they are derived from the mantle wedge. LILE (e.g. Rb, Cs, Ba, Sr) and LREE (e.g. La, Ce) enrichments are consistent with slab fluid contribution. B/La and Li/Y ratios can be used as a proxy for the flux of subducting material to the mantle wedge, they suggest there is a strong influence from this component in the generation of CVZ arc magmas, potentially inducing melting. CVZ tephra show long-term coherent variability in trace element geochemistry. Post ~ 4 Ma tephras display a more consistent, less variable, chemical fingerprint that persists up to and across the CVZ/TVZ transition at ~ 2 Ma. Initiation of TVZ volcanism may have occurred earlier than is presently considered, or CVZ to TVZ volcanism may have occurred without significant changes in magma generation processes.</p>


Destructive plate margin magmas may be subdivided into two groups on the basis of their rare earth element (REE) ratios. Most island arc suites have low Ce/Yb, and remarkably restricted isotope ratios of 87 Sr/ 86 Sr = 0.7033, 143 Nd/ 144 Nd = 0.51302, 206 Pb/ 204 Pb = 18.76 , 207 Pb/ 204 Pb = 15.57, and 208 Pb/ 204 Pb = 38.4. However, they also have Rb/Sr (0.03), Th/U (2.2) and Ce/Yb (8.5) ratios which are significantly less than accepted estimates for the bulk continental crust. The high Ce/Yb suites have higher incompatible element contents, more restricted heavy REE, and much more variable isotope ratios. Such rocks are found in the Aeolian Islands, Grenada, Indonesia and Philippines, and their isotope and trace element features have been attributed both to contributions from subducted sediment, and/or old trace element enriched material in the mantle wedge. It is argued that for isotope and trace element models the slab component can usefully be taken to consist of subducted sediment and altered mid-ocean ridge basalts, since these may contain ca. 80% of the water in the subducted slab, and the distinctive trace element features of arc magmas are generally attributed to the movement of material in hydrous fluids. The isotope data indicate that not more than 15% of the Sr and Th in an average arc magma were derived from subducted material, and that the rest were derived from the mantle wedge. The fluxes of elements which cannot be characterized isotopically are more difficult to constrain, but for most minor and trace elements the slab derived contribution in arc magmas is too small to have a noticeable effect on the residual slab.


Oceanography ◽  
2007 ◽  
Vol 20 (4) ◽  
pp. 68-79 ◽  
Author(s):  
Robert Embley ◽  
Edward Baker ◽  
David Butterfield ◽  
William Chadwick ◽  
John Lupton ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hong-Yan Li ◽  
Rui-Peng Zhao ◽  
Jie Li ◽  
Yoshihiko Tamura ◽  
Christopher Spencer ◽  
...  

AbstractHow serpentinites in the forearc mantle and subducted lithosphere become involved in enriching the subarc mantle source of arc magmas is controversial. Here we report molybdenum isotopes for primitive submarine lavas and serpentinites from active volcanoes and serpentinite mud volcanoes in the Mariana arc. These data, in combination with radiogenic isotopes and elemental ratios, allow development of a model whereby shallow, partially serpentinized and subducted forearc mantle transfers fluid and melt from the subducted slab into the subarc mantle. These entrained forearc mantle fragments are further metasomatized by slab fluids/melts derived from the dehydration of serpentinites in the subducted lithospheric slab. Multistage breakdown of serpentinites in the subduction channel ultimately releases fluids/melts that trigger Mariana volcanic front volcanism. Serpentinites dragged down from the forearc mantle are likely exhausted at >200 km depth, after which slab-derived serpentinites are responsible for generating slab melts.


2021 ◽  
Author(s):  
◽  
Katharine Emma Saunders

<p>The petrogenesis of silicic arc magmas is controversial with end-member models of fractional crystallisation and crustal anatexis having been invoked. A prime example of this is the archetypical continental Taupo Volcanic Zone and the adjacent oceanic Kermadec Arc. Insights into the genesis and timescales of magmatic processes of four continental rhyolitic magmas (Whakamaru, Oruanui, Taupo and Rotorua eruptives) and an oceanic (Healy seamount) rhyodacitic magma are documented through micro-analytical chemical studies of melt inclusions and crystal zonation of plagioclase and quartz. Electron probe microanalysis, laser ablation inductively coupled plasma mass spectrometry and Fourier transform infrared spectroscopy have been used to measure major, trace and volatile element concentrations, respectively, of melt inclusions and crystals. Melt inclusions are high silica (e.g. 74 - 79 wt%) irrespective of arc setting and display a wide range of trace element compositions (e.g. Sr = 17 - 180 ppm). Taupo Volcanic Zone melt inclusions exhibit higher K2O and Ce/Yb relative to Healy melt inclusions reflecting the assimilation of continental lithosphere. Quantitative trace element modelling of melt inclusion compositions: (a) demonstrates that magma genesis occurred through 62 - 76% fractional crystallisation at Healy whereas assimilation of continental lithosphere (greywacke) in addition to 60 - 80% fractional crystallisation is required for the Taupo Volcanic Zone magmas; and (b) suggests the presence of crystal mush bodies beneath silicic magma chambers in both continental and oceanic arc environments. Water concentrations of melt inclusions ranged between 1.4 - 5.1 wt% for the Whakamaru, Taupo and Healy samples. However, the inconsistency in the measured molecular water to hydroxyl concentrations of melt inclusions relative to those determined experimentally for groundmass rhyolitic glasses provide evidence for the degassing of inclusions prior to quenching, by diffusion of hydroxyl groups through the crystal host. Thus, partial pressures of water estimated from the inclusions and inferred depths of the crystallising magma bodies are underestimated. Chemical profiles of mineral zonation, however, indicate a more complex origin of silicic melts than simple fractionation and assimilation. For example, trace element modelling of Whakamaru plagioclase suggests that the three distinct textural plagioclase populations present in Whakamaru samples crystallised from four physiochemically discrete silicic melts. This modelling indicates a strong petrogenetic link between andesitic and silicic magmas from the chemical variation of selected Whakamaru plagioclase crystals possessing high anorthite (45-60 mol %) cores and low anorthite (~ 30 mol %) rim compositions and the interaction of greywacke partial melts. Furthermore, Sr diffusion modelling of core-rim interfaces of the same plagioclase crystals indicate the amalgamation of the magma chamber occurred continuously over the 15,000 years preceding the climactic eruption. Conversely, the major element zonation of Taupo plagioclases implies magma genesis occurred solely through assimilation and fractional crystallisation without the incorporation of evolved crystal mush magmas, indicating a spectrum of magmatic processes are occurring beneath the Taupo Volcanic Zone with each eruption providing only a snapshot of the petrogenesis of the Taupo Volcanic Zone.</p>


Sign in / Sign up

Export Citation Format

Share Document