incompatible element
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 15)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
David Neave ◽  
Olivier Namur

Mid-ocean ridge and ocean island basalts provide vital but incomplete insights into the chemical structure of Earth’s mantle. For example, high-anorthite plagioclase carried by these basalts is generally too primitive and incompatible-element depleted to have crystallized from them. Moreover, erupted basalts rarely preserve the strong isotopic and incompatible-element depletions found in some melt inclusions and mantle residua represented by abyssal peridotites. By integrating experimental observations with published analyses of natural crystals and glasses, we demonstrate that high-anorthite plagioclase is in equilibrium with melts generated by high-degree melting of depleted mantle sources. Although such melts seldom erupt, their imprints on crystal and melt inclusion records nonetheless suggest that high-anorthite plagioclase grows from endmember but essentially unexotic magmas. The widespread occurrence of high-anorthite plagioclase in both oceanic basalts and the oceanic crust hence indicates that depleted melts are pervasive in the upper mantle and lower crust despite rarely reaching the surface. Plagioclase archives therefore imply that depleted melts play much a greater role in lower crustal accretion than typically recognized and that the upper mantle may also be more depleted than previously thought.


2021 ◽  
Author(s):  
◽  
Christopher Edward Conway

<p>This thesis undertakes a detailed case study of the processes and timescales of arc andesite-dacite magma generation and lava flow emplacement at a continental composite volcano. This has been achieved through the collection and integration of high-resolution field, geochronological and geochemical datasets for lava flows that form the edifice of Ruapehu.  The influence of syn-eruptive lava-ice interaction on the distribution and preservation of lava flows on glaciated composite volcanoes is investigated by characterising the morphology and fracture characteristics of effusive products at Ruapehu. Ice-bounded and ice-dammed lava flows display over-thickened (50–100 m-high) margins adjacent to or within glaciated valleys, are intercalated with till and have lateral margins that are pervasively fractured by quench-contraction cooling joints. These characteristics can be accounted for by impoundment and chilling of lava flows that were emplaced against large flank glaciers. In contrast, lava flows located within valleys have minimal moraine cover and glacial striae and are characterised by fracture networks indicative of only localised and minor interaction with ice/snow. These lavas were emplaced onto a relatively ice-free edifice following glacial retreat since ~18 ka.  New high-precision ⁴⁰Ar/³⁹Ar eruption ages and whole-rock major element geochemistry for lava flows are interpreted in the context of geologic mapping, volcano-ice interaction processes and previous chronostratigraphic studies. This provides a high-resolution eruptive history and edifice evolution model for Ruapehu. Sub-glacial to ice-marginal effusive eruption of basaltic-andesite and andesite constructed the northern portion of the exposed edifice between ~200 and 150 ka (Te Herenga Formation) and the wide southeastern planèze as well as parts of the northern, eastern and western flanks of Ruapehu between ~166 and 80 ka (Wahianoa Formation). No ages were returned for lava flows for the period from 80–50 ka, indicating one or a combination of: an eruptive hiatus; subsequent erosion and burial of lavas; or syn-eruptive glacial conveyance of lava flows to the ring-plain. The greater part of the modern edifice was constructed via effusion of lava flows of the syn-glacial Mangawhero Formation (50–15 ka) and post-glacial Whakapapa Formation (<15 ka). Syn-glacial edifice growth occurred primarily via effusion of andesite-dacite lava flows that formed ice-bounded ridges adjacent to valleyfilling glaciers. Post-glacial summit cones were constructed in the presence of remnant upper flank glaciers between 15 and 10 ka. Debuttressing of two northern summit cones and a southern summit cone as ice underwent continued post-glacial retreat resulted in two major Holocene sector collapses and deposition of debris avalanche deposits on the northern and south-eastern flanks of Ruapehu, respectively. The northern collapse scar was infilled by a new cone comprising <10 ka lava flows that form the modern upper northern and eastern flanks of the volcano. Late Holocene to historic eruptive activity has occurred through Crater Lake, which occupies the site of the collapsed southern cone.  New whole-rock major and trace element compositions for lavas and their mineral and melt inclusion geochemical characteristics are evaluated within the context of the improved chronostratigraphic framework. The new constraints are combined with existing whole-rock isotopic data to establish the long-term development of the magma generation system beneath Ruapehu. Basaltic-andesite lavas erupted between ~200 and 150 ka contain low-K₂O (2–3 wt. %) melt inclusions and have whole-rock compositions characterised by low incompatible element (K, Rb, Ba, Th, U) abundances and high ¹⁴³Nd/¹⁴⁴Nd-low ⁸⁷Sr/⁸⁶Sr when compared to younger eruptive products. In particular, basaltic-andesite to dacite lavas that were erupted between 50–35 ka define a high-K/Ca trend over a range of ~8 wt. % SiO₂ as well as elevated incompatible trace element contents when compared to all other documented eruptive products from Ruapehu. Rhyodacitic to rhyolitic melt inclusions, interstitial glass and melt pockets in partially fused feldspathic xenoliths contained within the dacite lavas from this latter period contain high K₂O (5–6 wt. %) and Rb contents (250–280 ppm). The whole-rock and glass characteristics of 50–35 ka lavas reflect the generation and assimilation of partial melts of the greywacke-argillite basement within the magma system beneath Ruapehu during this period. Selective partial melting and assimilation of fertile, K- and Rb-rich mineral phases (e.g. biotite) within the meta-sedimentary mineral assemblage is inferred to explain the enriched nature of these melts. A reversion to progressively less silicic and less potassic lavas with lower incompatible element abundances erupted since 26 ka is matched by the recurrent incorporation of crystals that trapped low-K₂O melt inclusions. The trend is interpreted to reflect the exhaustion of fertile phases within assimilated continental source rocks as the crust was progressively heated during long-term thermal conditioning of the arc lithosphere beneath Ruapehu.</p>


2021 ◽  
Author(s):  
◽  
Christopher Edward Conway

<p>This thesis undertakes a detailed case study of the processes and timescales of arc andesite-dacite magma generation and lava flow emplacement at a continental composite volcano. This has been achieved through the collection and integration of high-resolution field, geochronological and geochemical datasets for lava flows that form the edifice of Ruapehu.  The influence of syn-eruptive lava-ice interaction on the distribution and preservation of lava flows on glaciated composite volcanoes is investigated by characterising the morphology and fracture characteristics of effusive products at Ruapehu. Ice-bounded and ice-dammed lava flows display over-thickened (50–100 m-high) margins adjacent to or within glaciated valleys, are intercalated with till and have lateral margins that are pervasively fractured by quench-contraction cooling joints. These characteristics can be accounted for by impoundment and chilling of lava flows that were emplaced against large flank glaciers. In contrast, lava flows located within valleys have minimal moraine cover and glacial striae and are characterised by fracture networks indicative of only localised and minor interaction with ice/snow. These lavas were emplaced onto a relatively ice-free edifice following glacial retreat since ~18 ka.  New high-precision ⁴⁰Ar/³⁹Ar eruption ages and whole-rock major element geochemistry for lava flows are interpreted in the context of geologic mapping, volcano-ice interaction processes and previous chronostratigraphic studies. This provides a high-resolution eruptive history and edifice evolution model for Ruapehu. Sub-glacial to ice-marginal effusive eruption of basaltic-andesite and andesite constructed the northern portion of the exposed edifice between ~200 and 150 ka (Te Herenga Formation) and the wide southeastern planèze as well as parts of the northern, eastern and western flanks of Ruapehu between ~166 and 80 ka (Wahianoa Formation). No ages were returned for lava flows for the period from 80–50 ka, indicating one or a combination of: an eruptive hiatus; subsequent erosion and burial of lavas; or syn-eruptive glacial conveyance of lava flows to the ring-plain. The greater part of the modern edifice was constructed via effusion of lava flows of the syn-glacial Mangawhero Formation (50–15 ka) and post-glacial Whakapapa Formation (<15 ka). Syn-glacial edifice growth occurred primarily via effusion of andesite-dacite lava flows that formed ice-bounded ridges adjacent to valleyfilling glaciers. Post-glacial summit cones were constructed in the presence of remnant upper flank glaciers between 15 and 10 ka. Debuttressing of two northern summit cones and a southern summit cone as ice underwent continued post-glacial retreat resulted in two major Holocene sector collapses and deposition of debris avalanche deposits on the northern and south-eastern flanks of Ruapehu, respectively. The northern collapse scar was infilled by a new cone comprising <10 ka lava flows that form the modern upper northern and eastern flanks of the volcano. Late Holocene to historic eruptive activity has occurred through Crater Lake, which occupies the site of the collapsed southern cone.  New whole-rock major and trace element compositions for lavas and their mineral and melt inclusion geochemical characteristics are evaluated within the context of the improved chronostratigraphic framework. The new constraints are combined with existing whole-rock isotopic data to establish the long-term development of the magma generation system beneath Ruapehu. Basaltic-andesite lavas erupted between ~200 and 150 ka contain low-K₂O (2–3 wt. %) melt inclusions and have whole-rock compositions characterised by low incompatible element (K, Rb, Ba, Th, U) abundances and high ¹⁴³Nd/¹⁴⁴Nd-low ⁸⁷Sr/⁸⁶Sr when compared to younger eruptive products. In particular, basaltic-andesite to dacite lavas that were erupted between 50–35 ka define a high-K/Ca trend over a range of ~8 wt. % SiO₂ as well as elevated incompatible trace element contents when compared to all other documented eruptive products from Ruapehu. Rhyodacitic to rhyolitic melt inclusions, interstitial glass and melt pockets in partially fused feldspathic xenoliths contained within the dacite lavas from this latter period contain high K₂O (5–6 wt. %) and Rb contents (250–280 ppm). The whole-rock and glass characteristics of 50–35 ka lavas reflect the generation and assimilation of partial melts of the greywacke-argillite basement within the magma system beneath Ruapehu during this period. Selective partial melting and assimilation of fertile, K- and Rb-rich mineral phases (e.g. biotite) within the meta-sedimentary mineral assemblage is inferred to explain the enriched nature of these melts. A reversion to progressively less silicic and less potassic lavas with lower incompatible element abundances erupted since 26 ka is matched by the recurrent incorporation of crystals that trapped low-K₂O melt inclusions. The trend is interpreted to reflect the exhaustion of fertile phases within assimilated continental source rocks as the crust was progressively heated during long-term thermal conditioning of the arc lithosphere beneath Ruapehu.</p>


2021 ◽  
Author(s):  
Lei Gao ◽  
Shuwen Liu ◽  
Peter Cawood ◽  
Jintuan Wang ◽  
Guozheng Sun ◽  
...  

Abstract The redox evolution of Archean mantle impacted Earth differentiation, mantle melting and the nature of chemical equilibrium between mantle, ocean and atmosphere of the early Earth. However, how and why it varies with time remain controversial. Archean mantle-derived volcanic rocks, especially basalts are ideal lithologies for reconstructing the mantle redox state. Here we show that the ~3.8-2.5 Ga basalts from fourteen cratons are subdivided geochemically into two groups, B-1, showing incompatible element depleted and modern mid-ocean ridge basalt-like features ((Nb/La)PM ≥ 0.75) and B-2 ((Nb/La)PM < 0.75), characterized by modern island arc basalt-like features. Our updated V-Ti redox proxy indicates the Archean upper mantle was more reducing than today, and that there was a significant redox heterogeneity between ambient and modified mantle presumably related to crustal recycling, perhaps via plate subduction, as shown by B-1 and B-2 magmas, respectively. The oxygen fugacity of modified mantle exhibits a ~1.5-2.0 log units increase over ~3.8-2.5 Ga, whereas the ambient mantle becomes more and more heterogeneous with respect to redox, apart from a significant increase at ~2.7 Ga. These findings are coincident with the increase in the proportions of crustal recycling-related lithologies with associated enrichment of associated incompatible elements (e.g., Th/Nb), indicating that increasing recycling played a crucial role on the secular oxidation of Archean upper mantle.


2021 ◽  
Vol 33 (5) ◽  
pp. 537-570
Author(s):  
Harvey E. Belkin ◽  
Ray Macdonald

Abstract. The mineral occurrences, parageneses, textures, and compositions of Zr-bearing accessory minerals in a suite of UK Paleogene granites from Scotland and Northern Ireland are described. Baddeleyite, zirconolite, and zircon, in that sequence, formed in hornblende + biotite granites (type 1) and hedenbergite–fayalite granites (type 2). The peralkaline microgranite (type 3) of Ailsa Craig contains zircon, dalyite, a eudialyte-group mineral, a fibrous phase which is possibly lemoynite, and Zr-bearing aegirine. Hydrothermal zircon is also present in all three granite types and documents the transition from a silicate-melt environment to an incompatible element-rich aqueous-dominated fluid. No textures indicative of inherited zircon were observed. The minerals crystallized in stages from magmatic through late-magmatic to hydrothermal. The zirconolite and eudialyte-group mineral are notably Y+REE-rich (REE signifies rare earth element). The crystallization sequence of the minerals may have been related to the activities of Si and Ca, to melt peralkalinity, and to local disequilibrium.


Author(s):  
H.S. Moghadam ◽  
Q.L. Li ◽  
W.L. Griffin ◽  
M. Chiaradia ◽  
K. Hoernle ◽  
...  

New trace-element, radiogenic Sr-Nd-Pb isotopic and geochronological data from Middle-Late Cretaceous Zagros ophiolites of Iran give new insights into the tectono-magmatic history of these supra-subduction zone (SSZ)-type ophiolites. The distribution of Middle-Late Cretaceous SSZ-type ophiolites in Iran comprises two parallel belts: (1) the outer Zagros ophiolitic belt and (2) the inner Zagros ophiolitic belt. These Middle-Late Cretaceous ophiolites were generated by seafloor spreading in what became the fore-arc and back-arc during the subduction initiation event and now define a ∼3000-km-long belt from Cyprus to Turkey, Syria, Iran, the UAE, and Oman. The Zagros ophiolites contain complete (if disrupted) mantle and crustal sequences. Mantle sequences from both outer-belt and inner-belt ophiolites are dominated by dunites, harzburgites, and lherzolites with minor chromitite lenses. Peridotites are also intruded by gabbros and a variety of mafic to minor felsic (plagiogranite and dacite) dikes. Crustal rocks comprise ultramafic-mafic cumulates as well as isotropic gabbros, sheeted dike complexes, pillowed and massive lavas, and felsic rocks. Our new zircon U-Pb ages indicate that the outer-belt and inner-belt ophiolites formed near coevally during the Middle-Late Cretaceous; 100−96 Ma for the outer belt and 105−94 Ma for the inner belt. Both incompatible-element ratios and isotopic data confirm that depleted mantle and variable contributions of subduction components were involved in the genesis of outer-belt and inner-belt rocks. Our data for the outer belt and inner belt along with those from better-studied ophiolites in Cyprus, Turkey, the UAE, and Oman lead to the conclusion that a broad, ∼3000-km-long swath of fore-arc lithosphere was created during Middle-Late Cretaceous time.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 570
Author(s):  
Maria Bogina ◽  
Boris Belyatsky ◽  
Evgenii Sharkov ◽  
Alexey Chistyakov ◽  
Robert Krymsky

This article reports new geochemical, Sr-Nd-Hf-Pb and Re-Os data on the rocks of the Middle Paleoproterozoic (1.99 Ga) Tiksheozero ultramafic-alkaline-carbonatite complex confined to the northeastern margin of the Karelian Craton. We focus on the poorly studied silicate rocks. Based on petrographic and geochemical research, the silicate rocks are subdivided into two groups: an ultramafic-mafic series depleted in REE, and other incompatible elements and an alkaline series enriched in these elements. Isotope studies showed that all rocks have juvenile isotope signatures and were likely derived from a primitive OIB-type mantle source with possible contributions of the subcontinental lithospheric mantle (SCLM). Insignificant crustal contamination is recorded by Pb and Os isotopic compositions. The incompatible element enrichment in the alkaline rocks and depletion in ultramafic-mafic rocks of the mildly alkaline series with allowance for insignificant crustal contamination confirm their derivation from different primary melts. However, a narrow range of Sr, Nd, Hf, and Pb isotope compositions and compact clusters in 207Pb/204Pb-206Pb/204Pb, Nd-87Sr/86Sr and Hf-Nd isotope diagrams indicate their origination from a common mantle source. A model of subsequent two-stage melting is being most consistent with the geochemical data for this complex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beñat Oliveira ◽  
William L. Griffin ◽  
Sarah E. M. Gain ◽  
Martin Saunders ◽  
Jeremy Shaw ◽  
...  

AbstractAggregates of corundum crystals with skeletal to hopper morphology occur in pyroclastic rocks erupted from Cretaceous basaltic volcanoes on Mt Carmel, N. Israel. The rapid growth of the crystals trapped volumes of the parental Al2O3-supersaturated melt; phenocrysts of tistarite (Ti2O3) in the trapped melts indicate crystallization at oxygen fugacities 6–7 log units below the Iron-Wüstite buffer (fO2 = ΔIW − 6 to − 7), induced by fluxes of mantle-derived CH4-H2 fluids. Cathodoluminescence images reveal growth zoning within the individual crystals of the aggregates, related to the substitution of Ti3+ in the corundum structure. Ti contents are < 0.3 wt% initially, then increase first linearly, then exponentially, toward adjacent melt pockets to reach values > 2 wt%. Numerical modelling indicates that the first skeletal crystals grew in an open system, from a moving magma. The subsequent linear increase in Ti reflects growth in a partially closed system, with decreasing porosity; the exponential increase in Ti close to melt pockets reflects closed-system growth, leading to dramatic increases in incompatible-element concentrations in the residual melts. We suggest that the corundum aggregates grew in melt/fluid conduits; diffusion modelling implies timescales of days to years before crystallization was terminated by explosive eruption. These processes probably operate in explosive volcanic systems in several tectonic settings.


2020 ◽  
Vol 117 (35) ◽  
pp. 21101-21107 ◽  
Author(s):  
C. Brenhin Keller ◽  
T. Mark Harrison

Accurately quantifying the composition of continental crust on Hadean and Archean Earth is critical to our understanding of the physiography, tectonics, and climate of our planet at the dawn of life. One longstanding paradigm involves the growth of a relatively mafic planetary crust over the first 1 to 2 billion years of Earth history, implying a lack of modern plate tectonics and a paucity of subaerial crust, and consequently lacking an efficient mechanism to regulate climate. Others have proposed a more uniformitarian view in which Archean and Hadean continents were only slightly more mafic than at present. Apart from complications in assessing early crustal composition introduced by crustal preservation and sampling biases, effects such as the secular cooling of Earth’s mantle and the biologically driven oxidation of Earth’s atmosphere have not been fully investigated. We find that the former complicates efforts to infer crustal silica from compatible or incompatible element abundances, while the latter undermines estimates of crustal silica content inferred from terrigenous sediments. Accounting for these complications, we find that the data are most parsimoniously explained by a model with nearly constant crustal silica since at least the early Archean.


Sign in / Sign up

Export Citation Format

Share Document