Free-convection similarity flows about two dimensional and axisymmetric bodies with closed lower ends

1961 ◽  
Vol 2 (1-2) ◽  
pp. 121-135 ◽  
Author(s):  
Willis H. Braun ◽  
Simon Ostrach ◽  
John E. Heighway
1974 ◽  
Vol 96 (4) ◽  
pp. 435-442 ◽  
Author(s):  
F. N. Lin ◽  
B. T. Chao

A rapid computation procedure is described for the prediction of heat transfer in laminar free convection boundary layers, either two-dimensional or axisymmetrical, over isothermal smooth objects with fairly arbitrary shape. The analysis employs suitable coordinate transformation which makes it possible to express the solutions of the governing conservation equations in terms of a sequence of universal functions that depend on the fluid Prandtl number and a configuration function. The latter is completely determined by the body contour and its orientation relative to the body force that generates the motion. Several of the leading universal functions have been evaluated and tabulated. The theory was applied to a number of body configurations and the results compared well with published analytical and/or experimental information. Some new results are also obtained for the local Nusselt number over horizontal elliptical cylinders and ellipsoids or revolution.


1973 ◽  
Vol 95 (3) ◽  
pp. 289-294 ◽  
Author(s):  
N. E. Hardwick ◽  
E. K. Levy

The steady, laminar, two-dimensional wake above a thin vertical isothermal heated plate cooled by free convection was investigated theoretically and experimentally. The system of partial differential equations governing the fluid motion and heat transfer in the vicinity of the plate and in the near wake region was formulated and solved using finite difference techniques. Using air, the temperature and velocity profiles in the wake region were measured experimentally using a laser holographic interferometer and a constant temperature hot wire anemometer.


1987 ◽  
Vol 109 (4) ◽  
pp. 997-1002 ◽  
Author(s):  
A. Nakayama ◽  
H. Koyama ◽  
F. Kuwahara

The two-phase boundary layer theory was adopted to investigate subcooled free-convection film boiling over a body of arbitrary shape embedded in a porous medium. A general similarity variable which accounts for the geometric effect on the boundary layer length scale was introduced to treat the problem once for all possible two-dimensional and axisymmetric bodies. By virtue of this generalized transformation, the set of governing equations and boundary conditions for an arbitrary shape reduces into the one for a vertical flat plate already solved by Cheng and Verma. Thus, the numerical values furnished for a flat plate may readily be tranlsated for any particular body configuration of concern. Furthermore, an explicit Nusselt number expression in terms of the parameters associated with the degrees of subcooling and superheating has been established upon considering physical limiting conditions.


Aerodynamics ◽  
2021 ◽  
Author(s):  
Vladimir Frolov

The paper presents the calculated results obtained by the author for critical Mach numbers of the flow around two-dimensional and axisymmetric bodies. Although the previously proposed method was applied by the author for two media, air and water, this chapter is devoted only to air. The main goal of the work is to show the high accuracy of the method. For this purpose, the work presents numerous comparisons with the data of other authors. This method showed acceptable accuracy in comparison with the Dorodnitsyn method of integral relations and other methods. In the method under consideration, the parameters of the compressible flow are calculated from the parameters of the flow of an incompressible fluid up to the Mach number of the incoming flow equal to the critical Mach number. This method does not depend on the means determination parameters of the incompressible flow. The calculation in software Flow Simulation was shown that the viscosity factor does not affect the value critical Mach number. It was found that with an increase in the relative thickness of the body, the value of the critical Mach number decreases. It was also found that the value of the critical Mach number for the two-dimensional case is always less than for the axisymmetric case for bodies with the same cross-section.


Sign in / Sign up

Export Citation Format

Share Document