Addendum: “Laminar Free Convection Over Two-Dimensional and Axisymmetric Bodies of Arbitrary Contour” (Journal of Heat Transfer, 1974, 96, pp. 435–442)

1976 ◽  
Vol 98 (2) ◽  
pp. 344-344 ◽  
Author(s):  
F. N. Lin ◽  
B. T. Chao
1994 ◽  
Vol 116 (2) ◽  
pp. 114-121 ◽  
Author(s):  
T. W. Kerslake ◽  
M. B. Ibrahim

The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase-change salt contained in toroidal canisters for thermal energy storage. This paper presents results from heat transfer analyses of the phase-change salt containment canister. A two-dimensional, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor-filled void regions, and forced convection in the heat engine working fluid. Void shape and location were prescribed based on engineering judgment. The salt phase-change process was modeled using the enthalpy method. Discussion of results focuses on the role of free convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground-based canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.


2006 ◽  
Vol 4 ◽  
pp. 166-173
Author(s):  
K.V. Moiseyev

In this paper, two-dimensional free convection of a liquid with a quadratic dependence of viscosity on the temperature in square is simulated numerically at different angles of inclination to the horizon. The integral coefficients of heat transfer on isothermal boundaries and the minimum critical Rayleigh numbers are calculated.


1974 ◽  
Vol 96 (4) ◽  
pp. 435-442 ◽  
Author(s):  
F. N. Lin ◽  
B. T. Chao

A rapid computation procedure is described for the prediction of heat transfer in laminar free convection boundary layers, either two-dimensional or axisymmetrical, over isothermal smooth objects with fairly arbitrary shape. The analysis employs suitable coordinate transformation which makes it possible to express the solutions of the governing conservation equations in terms of a sequence of universal functions that depend on the fluid Prandtl number and a configuration function. The latter is completely determined by the body contour and its orientation relative to the body force that generates the motion. Several of the leading universal functions have been evaluated and tabulated. The theory was applied to a number of body configurations and the results compared well with published analytical and/or experimental information. Some new results are also obtained for the local Nusselt number over horizontal elliptical cylinders and ellipsoids or revolution.


Author(s):  
Sufianu A. Aliu ◽  
Richard O. Fagbenle

Simple and familiar perturbation parameters have been employed in applying the corrected Merk series of Chao and Fagbenle to the laminar mixed convection flow over two dimensional or axisymmetric bodies. The governing ordinary differential equations for the first five sets of the resulting universal functions for the velocity and temperature have been given. Numerical solutions were subsequently obtained and the relevant universal functions tabulated with respect to the ‘wedge parameter’ for mixed convection two dimensional flows and with respect to both the ‘wedge parameter’ and ‘shape parameter’ for the axisymmetric case. Using the wall derivatives of these universal functions, friction and heat transfer in mixed convection flows over two dimensional or axisymmetric bodies have been obtained and used in evaluation of skin friction and surface heat transfer.


Sign in / Sign up

Export Citation Format

Share Document