Effects of axial heat conduction in a vertical flat plate on free convection heat transfer

1980 ◽  
Vol 23 (11) ◽  
pp. 1545-1553 ◽  
Author(s):  
M. Miyamoto ◽  
J. Sumikawa ◽  
T. Akiyoshi ◽  
T. Nakamura
1970 ◽  
Vol 92 (3) ◽  
pp. 345-350 ◽  
Author(s):  
E. S. Nowak ◽  
A. K. Konanur

Heat transfer to supercritical water (at 3400 psia in the pseudocritical region) by stable laminar free convection from an isothermal, vertical flat plate was analytically investigated. The actual variations with temperature of all or some of the thermophysical properties of supercritical water were taken into consideration. Fair agreement was found between the analytical values of this paper and existing experimental data.


Author(s):  
S. Prasanna ◽  
S. P. Venkateshan

The role of conduction and surface radiation on laminar free convection heat transfer from a heated vertical flat plate has been studied. Steady state experiments have been conducted on vertical flat plates, of different thermal conductivities and surface emissivities, with an embedded heater and the results have been reported in [1]. The plate dimensions were held fixed in all the experiments. An effort is made here to identify important parameters that are involved in wall conduction - free convection - radiation interaction phenomena. The convective heat transfer from a vertical surface is affected by the surface temperature of the plate and its variations which is influenced by two other modes of heat transfer, conduction within the plate and surface radiation. Hence, the present paper attempts to understand the interaction phenomenon between the three modes of heat transfer and explain the temperature distributions within the plate, observed both experimentally and in numerical simulations. It is found that radiation is very important as it significantly affects the temperature distribution along the plate.


Sign in / Sign up

Export Citation Format

Share Document