Heat transfer correlation for natural convection in a meniscus-shaped cavity and its application to contact melting process

1996 ◽  
Vol 39 (11) ◽  
pp. 2267-2270 ◽  
Author(s):  
H.S. Kim ◽  
C.-J. Kim ◽  
S.T. Ro
Author(s):  
Anita Eisakhani ◽  
Xiujie Gao ◽  
Rob Gorbet ◽  
J. Richard Culham

Shape memory alloy (SMA) actuators are becoming increasingly popular in recent years due to their properties such as large recovery strain, silent actuation and low weight. Actuation in SMA wires depends strongly on temperature which is difficult to measure directly. Therefore, a reliable model is required to predict wire temperature, in order to control the transformation, and hence the actuation, and to avoid potential degradation due to overheating. The purpose of this investigation is to develop resistance and natural convection heat transfer models to predict temperature of current-carrying SMA wires using indirect temperature measurement methods. Experiments are performed on electrically heated 0.5 mm diameter NiTi SMA wire during phase transformation. Convection heat transfer experiments are performed in an environment of air that allows for control of the ambient pressure and in turn the thermofluid properties, such as density and viscosity. By measuring convective heat loss at a range of pressures, an empirical natural convection heat transfer correlation is determined for inclination angles from horizontal to vertical, in the Rayleigh number range of 2.6 × 10−8 ≤ RaD ≤ 6.0 × 10−1. Later, effect of temperature changes on electrical resistance and other control parameters such as applied external stress, wire inclination angle, wire length and ambient pressure is investigated. Based on experimental results a resistance model is developed for SMA wires that combined with the heat transfer correlation previously derived can be used to predict temperature and natural convection heat transfer coefficient of NiTi SMA wires during phase transformation for different wire lengths and inclination angles under various applied external stresses.


2018 ◽  
Vol 240 ◽  
pp. 01006 ◽  
Author(s):  
Nadezhda Bondareva ◽  
Mikhail Sheremet

Present study is devoted to numerical simulation of heat and mass transfer inside a cooper profile filled with paraffin enhanced with Al2O3 nanoparticles. This profile is heated by the heat-generating element of constant volumetric heat flux. Two-dimensional approximation of melting process is described by the Navier-Stokes equations in non-dimensional variables such as stream function, vorticity and temperature. The enthalpy formulation has been used for description of the heat transfer. The influence of volume fraction of nanoparticles and intensity of heat generation on melting process and natural convection in liquid phase has been studied.


Author(s):  
Anton Beck ◽  
Martin Koller ◽  
Heimo Walter ◽  
Michael Hameter

In this paper the results of a numerical investigation of the melting and solidification process of sodium nitrate, which is used as phase change material, will be presented. For the heat transfer to the sodium nitrate different finned tube designs, namely helical-, transversal- and longitudinal finned tubes, are used. The numerical results of the melting and solidification process for the different design cases will be compared. The numerical analysis of the melting process has shown that apart from the first period of the charging process natural convection is the dominant heat transfer mechanism. The numerical analysis of the melting process has also shown that for a fast melting process heat exchanger tubes should be designed in such a way that an unrestricted natural convection is guaranteed. The numerical investigation for the solidification process has shown that the dominant heat transfer mechanism is heat conduction. The investigation has also shown that the solidification front grows more uniformly from the tube surface to the outer shell compared to the melting front. Therefore no significant differences between the different tube designs are detected concerning the solidification process.


Author(s):  
Manel Kraiem ◽  
Mustapha Karkri ◽  
Sassi Ben Nasrallah ◽  
patrick sobolciak ◽  
Magali Fois ◽  
...  

Thermophysical characterization of three paraffin waxes (RT27, RT21 and RT35HC) is carried out in this study using DSC, TGA and transient plane source technics. Then, a numerical study of their melting in a rectangular enclosure is examined. The enthalpy-porosity approach is used to formulate this problem in order to understand the heat transfer mechanism during the melting process. The analysis of the solid-liquid interface shape, the temperature field shows that the conduction is the dominant heat transfer mode in the beginning of the melting process. It is followed by a transition regime and the natural convection becomes the dominant heat transfer mode. The effects of the Rayleigh number and the aspect ratio of the enclosure on the melting phenomenon are studied and it is found that the intensity of the natural convection increases as the Rayleigh number is higher and the aspect ratio is smaller. In the second part of the numerical study, a comparison of the performance of paraffins waxes during the melting process is conducted. Results reveals that from a kinetically RT21 is the most performant but in term of heat storage capacity, it was inferred that RT35HC is the most efficient PCM.


Sign in / Sign up

Export Citation Format

Share Document