A model for an expert system for medium access control in a local area network

1985 ◽  
Vol 37 (1-3) ◽  
pp. 39-83 ◽  
Author(s):  
Ruth Anne Maule ◽  
Abraham Kandel
2020 ◽  
Vol 12 (1) ◽  
pp. 11 ◽  
Author(s):  
Asfund Ausaf ◽  
Mohammad Zubair Khan ◽  
Muhammad Awais Javed ◽  
Ali Kashif Bashir

Internet of Things (IoT)-based devices consist of wireless sensor nodes that are battery-powered; thus, energy efficiency is a major issue. IEEE 802.15.4-compliant IoT devices operate in the unlicensed Industrial, Scientific, and Medical (ISM) band of 2.4 GHz and are subject to interference caused by high-powered IEEE 802.11-compliant Wireless Local Area Network (WLAN) users. This interference causes frequent packet drop and energy loss for IoT users. In this work, we propose a WLAN Aware Cognitive Medium Access Control (WAC-MAC) protocol for IoT users that uses techniques, such as energy detection based sensing, adaptive wake-up scheduling, and adaptive backoff, to reduce interference with the WSN and improve network lifetime of the IoT users. Results show that the proposed WAC-MAC achieves a higher packet reception rate and reduces the energy consumption of IoT nodes.


Wireless Local Area Network (WLAN) is an infrastructure network in which nodes are connected to a centralized system to provide Internet access to mobile users by radio waves. But WLANs are vulnerable to Medium Access Control (MAC) layer Denial of Service (DoS) attacks due to the susceptibility of the management frames. An attacker can spoof the MAC address of the legitimate client and perform de-authentication attack to disconnect WLANs users from the access point. Many free tools are available in Kali Linux Operating System (OS) by which this attack can be performed and cause a security threat to WLAN users. The consequences of de-authentication DoS attack are frequent disconnection from Internet, traffic redirection, man-in-the-middle attack, and congestion. Despite enormous efforts in combating de-authentication DoS attack in the past decade, this attack is still a serious threat to the security of the cyber world. Medium Access Control Spoof Detection and Prevention (MAC SDP) DoS algorithm performs detection and prevention of de-authentication attack caused by spoofing MAC address. This algorithm is modified to make it more immune to the de-authentication attack and implemented in real-time scenario. The results show that the proposed technique increases the packet flow rate by 20.36%, reduces the packet loss by 95.71%, and reduces the down time and recovery time by 0.39 sec and 0.9 sec respectively as compared to MAC SDP DoS algorithm.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 216
Author(s):  
Md. Ruhul Amin ◽  
Md. Shohrab Hossain ◽  
Mohammed Atiquzzaman

In-band full duplex wireless medium access control (MAC) protocol is essential in order to enable higher layers of the protocol stack to exploit the maximum benefits from physical layer full duplex technology. Unlike half duplex wireless local area network, a full duplex MAC protocol has to deal with several unique issues and challenges that arise because of the dynamic nature of the wireless environment. In this paper, we have discussed several existing full duplex MAC protocols and have shown qualitative comparisons among these full duplex MAC protocols. Full duplex in-band wireless communication has the potential to double the capacity of wireless network. Inter-client Interference (ICI) is a hindrance in achieving double spectral efficiency of the in-band full-duplex wireless medium. In this paper, we have classified existing solutions to the ICI problem and compared the solutions with respect to the proposed approaches, their advantages and disadvantages.We have also identified and discussed several issues and challenges of designing a full duplex MAC protocol. Results of qualitative comparisons of various wireless full duplex MAC protocols may be applied to design new protocols as well as researchers may find the identified issues and challenges helpful to solve various problems of a full duplex MAC protocol.


2018 ◽  
Author(s):  
Kiramat

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communications. Maintained by the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Committee (IEEE 802). This document highlights the main features of IEEE 802.11n variant such as MIMO, frame aggregation and beamforming along with the problems in this variant and their solutions


Sign in / Sign up

Export Citation Format

Share Document