On the impossibility of regular reflection of a steady-state shock wave from the axis of symmetry

1990 ◽  
Vol 54 (2) ◽  
pp. 201-203 ◽  
Author(s):  
A.I. Rylov
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gorakh Nath

Abstract This paper presents the development of mathematical model to obtain the approximate analytical solutions for isothermal flows behind the strong shock (blast) wave in a van der Waals gas and small solid particles mixture. The small solid particles are continuously distributed in the mixture and the equilibrium conditions for flow are maintained. To derive the analytical solutions, the physical variables such as density, pressure, and velocity are expanded using perturbation method in power series. The solutions are derived in analytical form for first approximation, and for second order approximation the set of differential equations are also obtained. The effects of an increase in the problem parameters value on the physical variables are investigated for first order approximation. A comparison is also, made between the solution of cylindrical shock and spherical shock. It is found that the fluid density and fluid pressure become zero near the point or axis of symmetry in spherical or cylindrical symmetry, respectively, and therefore a vacuum is created near the point or axis of symmetry which is in tremendous conformity with the physical condition in laboratory to generate the shock wave.


1991 ◽  
pp. 27-32 ◽  
Author(s):  
Emad Fatemi ◽  
Carl L. Gardner ◽  
Joseph W. Jerome ◽  
Stanley Osher ◽  
Donald J. Rose

2020 ◽  
Vol 899 ◽  
Author(s):  
Longsheng Xue ◽  
Ferry F. J. Schrijer ◽  
Bas W. van Oudheusden ◽  
Chengpeng Wang ◽  
Zhiwei Shi ◽  
...  

Abstract


1966 ◽  
Vol 9 (6) ◽  
pp. 1053 ◽  
Author(s):  
H. L. Frisch
Keyword(s):  

1996 ◽  
Vol 118 (2) ◽  
pp. 268-277 ◽  
Author(s):  
A. P. Saxer ◽  
H. M. Felici

A three-dimensional unsteady flow computation has been performed for a transonic first turbine stage under the influence of streaks of hot gas exiting the combustion chamber. Realistic flow conditions are obtained by using an unequal stator-to-rotor pitch, a single-streak/multistator channel configuration, and periodic boundary conditions. The resulting unsteady shock wave system and the hot streak migration as well as the shock wave/streak interaction are presented and discussed. In addition, the time average of the periodic unsteady solution is analyzed and compared with a steady-state computation. The steady-state solution is analyzed and compared with a steady-state computation. The steady-state solution matches the time-averaged one in terms of the pressure field and the maximum stagnation temperature on the rotor blade surface. However, the rotor blade temperature patterns are different with a stronger radial secondary flow present in the time-averaged solution due to the retention of the circumferential streak variations at the stator/rotor interface.


1983 ◽  
Vol 18 (2) ◽  
pp. 243-247
Author(s):  
V. I. Bogatko ◽  
G. A. Kolton

Sign in / Sign up

Export Citation Format

Share Document