Regular Reflection of a Shock Wave Over a Porous Layer: Theory and Experiment

1995 ◽  
pp. 175-180 ◽  
Author(s):  
Susumu Kobayashi ◽  
Takashi Adachi ◽  
Tateyuki Suzuki
2020 ◽  
Vol 899 ◽  
Author(s):  
Longsheng Xue ◽  
Ferry F. J. Schrijer ◽  
Bas W. van Oudheusden ◽  
Chengpeng Wang ◽  
Zhiwei Shi ◽  
...  

Abstract


1979 ◽  
Vol 94 (3) ◽  
pp. 541-559 ◽  
Author(s):  
L. F. Henderson ◽  
A. Lozzi

Our 1975 paper reported the results of experiments on shock reflexion in a wind tunnel and a shock tube; further results are presented here. For strong shocks it is shown that transition to Mach reflexion takes place continuously at the shock wave incidence angle ω0 corresponding to the normal shock point ω0 = ωN, unless the downstream boundaries form a throat. In this event transition can be promoted anywhere within the range ω0 [les ] ωN, and it is even possible to suppress regular reflexion altogether! However when ω0 < ωN the transition is discontinuous and accompanied by hysteresis. Again for strong shocks evidence is presented which suggests that the famous persistence of regular reflexion beyond the ωN point ω0 > ωN is spurious. For weak shocks the transition condition is not known but it is found that even for regular reflexion a marked discrepancy between theory and experiment develops as the shocks become progressively weaker. Also when weak shocks diffract over single concave corners there is a somewhat surprising discontinuity in the regular reflexion range. It seems that none of these phenomena can be adequately explained by real gas effects such as viscosity and variation of specific heats.


1983 ◽  
Vol 18 (2) ◽  
pp. 243-247
Author(s):  
V. I. Bogatko ◽  
G. A. Kolton

2017 ◽  
Vol 813 ◽  
pp. 70-84 ◽  
Author(s):  
V. Soni ◽  
A. Hadjadj ◽  
A. Chaudhuri ◽  
G. Ben-Dor

Numerical simulations were conducted to understand the different wave configurations associated with the shock-wave reflections over double-concave cylindrical surfaces. The reflectors were generated computationally by changing different geometrical parameters, such as the radii of curvature and the initial wedge angles. The incident-shock-wave Mach number was varied such as to cover subsonic, transonic and supersonic regimes of the flows induced by the incident shock. The study revealed a number of interesting wave features starting from the early stage of the shock interaction and transition to transitioned regular reflection (TRR) over the first concave surface, followed by complex shock reflections over the second one. Two new shock bifurcations have been found over the second wedge reflector, depending on the velocity of the additional wave that appears during the TRR over the first wedge reflector. Unlike the first reflector, the transition from a single-triple-point wave configuration (STP) to a double-triple-point wave configuration (DTP) and back occurred several times on the second reflector, indicating that the flow was capable of retaining the memory of the past events over the entire process.


1976 ◽  
Vol 76 (1) ◽  
pp. 157-176 ◽  
Author(s):  
A. M. Abd–El–Fattah ◽  
L. F. Henderson ◽  
A. Lozzi

This paper presents experimental data obtained for the refraction of a plane shock wave at a carbon dioxide–helium interface. The gases were separated initially by a delicate polymer membrane. Both regular and irregular wave systems were studied, and a feature of the latter system was the appearance of bound and free precursor shocks. Agreement between theory and experiment is good for regular systems, but for irregular ones it is sometimes necessary to take into account the effect of the membrane inertia to obtain good agreement. The basis for the analysis of irregular systems is one-dimensional piston theory and Snell's law.


Sign in / Sign up

Export Citation Format

Share Document