Determination of particle-size distribution and concentration of cigarette smoke by a light-scattering method

1974 ◽  
Vol 48 (3) ◽  
pp. 461-469 ◽  
Author(s):  
Takashi Okada ◽  
Kazuko Matsunuma
Author(s):  
T. Okada ◽  
Y. Ishizu ◽  
K. Matsunuma

AbstractA new method for determining particle-size distribution of cigarette smoke particles was developed by simultaneous measurement of scattered light at three angles for a fixed wavelength. A theoretical chart useful for this purpose, which was made of the relative intensities of scattered light at the angles 45° and 135° to that at the angle 90°, was calculated on the basis of the Mie theory. The number concentration was determined from the Rayleigh ratio using the working standard method. The measurements were rapidly performed, without change of particle size during measuring time, with a device for dilution. The geometric mean diameter, the logarithmic standard deviation and the number concentration of mainstream smoke were found to be about 0.18 um, 0.4 and 3 X 10


2021 ◽  
Vol 66 (3) ◽  
Author(s):  
Evgeny Abakumov ◽  
Timur Nizamutdinov ◽  
Viacheslav Polyakov

This study presents the results of polydispersity analysis of soil-like bodies from two various polar regions using the laser light scattering method. The differences in the particle size distribution of cryoconite samples from the Anuchin Glacier (Antarctica) and the Mushketov Glacier (Arctic) are described. The samples obtained from the Mushketov Glacier are characterized by a finer particle size distribution than samples collected on the Anuchin Glacier. While comparing our results with previously published studies, it was found that the method of laser light scattering shows a lower content of small fractions (<0.05 mm) compared to the classical methods of sedimentation, since these methods are based on fundamentally different physical principles. The laser method used requires low amounts of samples (0.2–0.5 g), while the classical sedimentary method uses a higher gravimetric portion of cryoconite (5–10 g), which is critical for field sampling.


Sign in / Sign up

Export Citation Format

Share Document