A second-order, time integration scheme for calculating stratified incompressible flows

1976 ◽  
Vol 22 (1) ◽  
pp. 74-86 ◽  
Author(s):  
Robert K.-C Chan
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Zhongdi Cen ◽  
Anbo Le ◽  
Aimin Xu

We apply an exponential time integration scheme combined with a central difference scheme on a piecewise uniform mesh with respect to the spatial variable to evaluate a generalized Black-Scholes equation. We show that the scheme is second-order convergent for both time and spatial variables. It is proved that the scheme is unconditionally stable. Numerical results support the theoretical results.


2004 ◽  
Vol 01 (03) ◽  
pp. 507-518
Author(s):  
J. C. MANDAL ◽  
J. BALLMANN

An efficient implicit unstructured grid algorithm for solving unsteady inviscid compressible flows over moving body employing an Arbitrary Lagrangian Eulerian formulation is presented. In the present formulation, the time discretization is performed using a second-order accurate 3-point time integration scheme and the upwind-biased space discretization using second-order accurate finite volume formulation with Venkatakrishnan limiter. The face-velocities of the control volumes are computed using Geometric Conservation Laws. The nonlinear system arising from the implicit formulation is solved using an ILU preconditioned Newton–Krylov iteration at every time step. The computed results for two test cases involving harmonically oscillating NACA0012 airfoil are presented in order to demonstrate the efficacy of the present solver.


Author(s):  
Jeffrey L. Cipolla

We introduce an approach blending the Perfectly Matched Layer (PML) and infinite element paradigms, to achieve better performance and wider applicability than either approach alone. In this paper, we address the specific challenges of unbounded problems when using time-domain explicit finite elements: 1. The algorithm must be spatially local, to minimize storage and communication cost, 2. It must contain second-order time derivatives for compatibility with the explicit central-difference time integration scheme, 3. Its coefficient for the second-order derivatives must be diagonal (“lumped mass”), 4. It must be time-stable when used with central-differences, 5. It must converge to the correct low-frequency (Laplacian) limit, 6. It should exhibit high accuracy across typically encountered dynamic frequencies, i.e. at short to long wavelengths, 7. Its user interface should be as simple as possible. Here, we will describe the derivation of a time-domain implementation of the hybrid PML/infinite element, and discuss its advantages for implementation.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Rita Greco ◽  
Francesco Trentadue

Response sensitivity evaluation is an important element in reliability evaluation and design optimization of structural systems. It has been widely studied under static and dynamic forcing conditions with deterministic input data. In this paper, structural response and reliability sensitivities are determined by means of the time domain covariance analysis in both classically and nonclassically damped linear structural systems. A time integration scheme is proposed for covariance sensitivity. A modulated, filtered, white noise input process is adopted to model the stochastic nonstationary loads. The method allows for the evaluation of sensitivity statistics of different quantities of dynamic response with respect to structural parameters. Finally, numerical examples are presented regarding a multistorey shear frame building.


2020 ◽  
Vol 372 ◽  
pp. 113395 ◽  
Author(s):  
R. Ortigosa ◽  
A.J. Gil ◽  
J. Martínez-Frutos ◽  
M. Franke ◽  
J. Bonet

2021 ◽  
Vol 245 ◽  
pp. 106433
Author(s):  
Mohammad Mahdi Malakiyeh ◽  
Saeed Shojaee ◽  
Saleh Hamzehei-Javaran ◽  
Klaus-Jürgen Bathe

2018 ◽  
Author(s):  
Tuomas Kärnä ◽  
Stephan C. Kramer ◽  
Lawrence Mitchell ◽  
David A. Ham ◽  
Matthew D. Piggott ◽  
...  

Abstract. Unstructured grid ocean models are advantageous for simulating the coastal ocean and river-estuary-plume systems. However, unstructured grid models tend to be diffusive and/or computationally expensive which limits their applicability to real life problems. In this paper, we describe a novel discontinuous Galerkin (DG) finite element discretization for the hydrostatic equations. The formulation is fully conservative and second-order accurate in space and time. Monotonicity of the advection scheme is ensured by using a strong stability preserving time integration method and slope limiters. Compared to previous DG models advantages include a more accurate mode splitting method, revised viscosity formulation, and new second-order time integration scheme. We demonstrate that the model is capable of simulating baroclinic flows in the eddying regime with a suite of test cases. Numerical dissipation is well-controlled, being comparable or lower than in existing state-of-the-art structured grid models.


PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Alexander Janz ◽  
Peter Betsch ◽  
Marlon Franke ◽  
Rogelio Ortigosa

Sign in / Sign up

Export Citation Format

Share Document