Non-dimensional analysis of a physically based rainfall-runoff-erosion model over steep slopes

1995 ◽  
Vol 173 (1-4) ◽  
pp. 327-341 ◽  
Author(s):  
Rao S. Govindaraju
2013 ◽  
Vol 58 (5) ◽  
pp. 1162-1176 ◽  
Author(s):  
Asim Krishna Sajjan ◽  
Yeboah Gyasi-Agyei ◽  
Raj Hari Sharma
Keyword(s):  

2005 ◽  
Vol 2 (3) ◽  
pp. 639-690 ◽  
Author(s):  
G. P. Zhang ◽  
H. H. G. Savenije

Abstract. Based on the Representative Elementary Watershed (REW) approach, the modelling tool REWASH (Representative Elementary WAterShed Hydrology) has been developed and applied to the Geer river basin. REWASH is deterministic, semi-distributed, physically based and can be directly applied to the watershed scale. In applying REWASH, the river basin is divided into a number of sub-watersheds, so called REWs, according to the Strahler order of the river network. REWASH describes the dominant hydrological processes, i.e. subsurface flow in the unsaturated and saturated domains, and overland flow by the saturation-excess and infiltration-excess mechanisms. Through flux exchanges among the different spatial domains of the REW, surface and subsurface water interactions are fully coupled. REWASH is a parsimonious tool for modelling watershed hydrological response. However, it can be modified to include more components to simulate specific processes when applied to a specific river basin where such processes are observed or considered to be dominant. In this study, we have added a new component to simulate interception using a simple parametric approach. Interception plays an important role in the water balance of a watershed although it is often disregarded. In addition, a refinement for the transpiration in the unsaturated zone has been made. Finally, an improved approach for simulating saturation overland flow by relating the variable source area to both the topography and the groundwater level is presented. The model has been calibrated and verified using a 4-year data set, which has been split into two for calibration and validation. The model performance has been assessed by multi-criteria evaluation. This work is the first full application of the REW approach to watershed rainfall-runoff modelling in a real watershed. The results demonstrate that the REW approach provides an alternative blueprint for physically based hydrological modelling.


2018 ◽  
Vol 13 (3) ◽  
pp. 197-208
Author(s):  
Zuzana Németová ◽  
David Honek ◽  
Tamara Látková ◽  
Monika Šulc Michalková ◽  
Silvia Kohnová

2017 ◽  
Vol 21 (2) ◽  
pp. 1225-1249 ◽  
Author(s):  
Ralf Loritz ◽  
Sibylle K. Hassler ◽  
Conrad Jackisch ◽  
Niklas Allroggen ◽  
Loes van Schaik ◽  
...  

Abstract. This study explores the suitability of a single hillslope as a parsimonious representation of a catchment in a physically based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against streamflow data highlights that both models predicted the annual pattern of streamflow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall–runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results confirm that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search for the optimal representation of catchments in physically based models.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Carlos Javier Villa Alvarado ◽  
Eladio Delgadillo-Ruiz ◽  
Carlos Alberto Mastachi-Loza ◽  
Enrique González-Sosa ◽  
Ramos Salinas Norma Maricela

Today the knowledge of physical parameters of a basin is essential to know adequately the rainfall-runoff process; it is well known that the specific characteristics of each basin such as temperature, geographical location, and elevation above sea level affect the maximum discharge and the basin time response. In this paper a physically based model has been applied, to analyze water balance by evaluating the volume rainfall-runoff using SHETRAN and hydrometric data measurements in 2003. The results have been compared with five ETp different methodologies in the Querétaro river basin in central Mexico. With these results the main effort of the authorities should be directed to better control of land-use changes and to working permanently in the analysis of the related parameters, which will have a similar behavior to changes currently being introduced and presented in observed values in this basin. This methodology can be a strong base for sustainable water management in a basin, the prognosis and effect of land-use changes, and availability of water and also can be used to determine application of known basin parameters, basically depending on land-use, land-use changes, and climatological database to determine the water balance in a basin.


Soil Research ◽  
1999 ◽  
Vol 37 (1) ◽  
pp. 1 ◽  
Author(s):  
B. Yu ◽  
C. W. Rose

When physically based erosion models such as GUEST are used to determine soil erodibility parameters or to predict the rate of soil loss, data on runoff rates, as distinct from event runoff amount, are often needed. Data on runoff rates, however, are not widely available. This paper describes methods that can be used to overcome this lack of data on runoff rates. These methods require only rainfall rates and runoff amounts, which are usually available for sites set up primarily to test and validate the USLE technology. In addition, the paper summarises the data requirements for the erosion model GUEST and application procedures. In the accompanying paper, these methods are applied to 4 experimental sites in the ASIALAND Network.


Sign in / Sign up

Export Citation Format

Share Document