The analysis of excitation dependent luminescence spectra by total luminescence spectroscopy

1984 ◽  
Vol 31-32 ◽  
pp. 532-534 ◽  
Author(s):  
G.W. Suter ◽  
A.J. Kallir ◽  
U.P. Wild
2020 ◽  
Vol 108 (7) ◽  
pp. 527-533 ◽  
Author(s):  
Pascal E. Reiller ◽  
Clarisse Mariet

AbstractTo investigate the extraction of uranium(VI) in HCl media by Aliquat® 336 in 1:99 (v:v) 1-decanol:n-dodecane mixture, our objective is to identify the complexe(s) in the organic phase by time-resolved laser-induced luminescence spectroscopy (TRLS). The extraction mechanism is supposed to involve the formation of $[U{O_2}Cl_4^{2 - } \cdot {({R_4}{N^ + })_2}]$ in the organic phase. The occurrence of such a species leads to the presence of the ${\rm{U}}{{\rm{O}}_2}{\rm{Cl}}_4^{2 - }$ species in the organic solution, which luminescence shows particular features. The luminescence spectra and decay time evolutions are obtained in the organic phase as a function of HCl concentration in the aqueous phase (0.5–6 M). The extraction of ${\rm{U}}{{\rm{O}}_2}{\rm{Cl}}_4^{2 - }$ is confirmed by the particular spectrum of uranium(VI) in the organic phase, and the typical splitting of the luminescence bands, due to the crystal field effect, is clearly evidenced. The stoichiometry is verified using luminescence intensity variation as a function of the activity of Cl−, and extraction constants are calculated both using the specific interaction theory and Pitzer model. A decomposition of the spectrum of the extracted complex in the organic phase is also proposed. The decay time variation as a function of temperature allows estimating the activation energy of the luminescence process of the extracted complex.


1995 ◽  
Vol 99 (46) ◽  
pp. 16835-16841 ◽  
Author(s):  
Krystyna Palewska ◽  
Jozef Lipinski ◽  
Juliusz Sworakowski ◽  
Jerzy Sepio-l ◽  
Hansruedi Gygax ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 420
Author(s):  
Nicholas Khaidukov ◽  
Angela Pirri ◽  
Maria Brekhovskikh ◽  
Guido Toci ◽  
Matteo Vannini ◽  
...  

Samples of magnesium aluminum spinel ceramics doped with manganese ions were prepared by a high-temperature solid-state reaction method; their potential as red-emitting phosphors was analyzed using a time-resolved luminescence spectroscopy technique, from room temperature to 10 K. It was found that in the red spectral range, the luminescence spectra of manganese ions in the MgAl2O4 spinel showed a narrow band peaking at 651 nm due to the emission of Mn4+ and a broader emission band in the region of 675 ÷ 720 nm; the ratio of intensities for these bands depends on the synthesis conditions. By applying a special multi-step annealing procedure, the MgAl2O4:Mn4+ phosphor containing only tetravalent manganese ions, Mn4+, was synthesized. Broad-band far-red emission observed from MgAl2O4:Mn and Mg1.25Al1.75O3.75F0.25:Mn phosphors, prepared by a conventional method of a solid-state reaction, was interpreted as coming from Mn3+ ions.


1995 ◽  
Vol 413 ◽  
Author(s):  
M. A. Drobizhev ◽  
M. N. Sapozhnikov ◽  
V. M. KobryanskII

ABSTRACTSelectively excited room-temperature luminescence spectra are reported for thin films of poly(p-phenylene) (PPP) deposited onto quartz substrata. The spectra exhibit a localization threshold in the low-energy tail of the luminescence excitation band at vloc.= 22400 cm−1, 2200 cm−1 below the maximum of the excitation spectrum. Upon laser excitation at Vex < Vloc., the maximum Vem of the luminescence spectrum shifts linearly with Vex due to selective excitation of polymer segments. It was found that there exists the frequency range where the slope of the Vem vs Vex dependence is smaller than unity, which corresponds to our previous model calculations for the case of selective excitation of chromophores through broad phonon bands. At vex > vloc,, the luminescence spectrum is independent of Vex. This behavior can be explained if one assumes that upon excitation below the localization threshold the luminescence is related to polymer segments directly excited by laser, whereas upon exciting above the threshold the fast energy relaxation takes place from initially excited states to lower-lying states, from which uminescence occurs.


Sign in / Sign up

Export Citation Format

Share Document