scholarly journals Time- and Temperature-Dependent Luminescence of Manganese Ions in Ceramic Magnesium Aluminum Spinels

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 420
Author(s):  
Nicholas Khaidukov ◽  
Angela Pirri ◽  
Maria Brekhovskikh ◽  
Guido Toci ◽  
Matteo Vannini ◽  
...  

Samples of magnesium aluminum spinel ceramics doped with manganese ions were prepared by a high-temperature solid-state reaction method; their potential as red-emitting phosphors was analyzed using a time-resolved luminescence spectroscopy technique, from room temperature to 10 K. It was found that in the red spectral range, the luminescence spectra of manganese ions in the MgAl2O4 spinel showed a narrow band peaking at 651 nm due to the emission of Mn4+ and a broader emission band in the region of 675 ÷ 720 nm; the ratio of intensities for these bands depends on the synthesis conditions. By applying a special multi-step annealing procedure, the MgAl2O4:Mn4+ phosphor containing only tetravalent manganese ions, Mn4+, was synthesized. Broad-band far-red emission observed from MgAl2O4:Mn and Mg1.25Al1.75O3.75F0.25:Mn phosphors, prepared by a conventional method of a solid-state reaction, was interpreted as coming from Mn3+ ions.

2011 ◽  
Vol 287-290 ◽  
pp. 1460-1463 ◽  
Author(s):  
Lin Yan Jia ◽  
Zhong Bao Shao ◽  
Yan Wen Tian

The pure phase red phosphor yttrium borate doped with Eu3+was prepared by a new solid state reaction named high temperature ball milling method. The phosphor was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and luminescence spectra. The results show that the single phase YBO3:Eu3+phosphor was obtained at 600°C, which is obviously decreased in contrast to conventional solid state reaction method. The particles are approximately nanometer size with narrow distribution range and spherical morphology. In emission spectra, the strongest peak at 597nm is due to the transition5D0→7F1 of Eu3+ions under 394nm monitoring wavelength. The luminescent properties of YBO3:Eu3+phosphor with 25 mol% doping concentration of Eu3+is optimal.


2012 ◽  
Vol 730-732 ◽  
pp. 71-75
Author(s):  
Beata Wodecka-Dus ◽  
Jolanta Dzik ◽  
Henryk Bernard ◽  
Katarzyna Osinska ◽  
Agata Lisińska-Czekaj ◽  
...  

In the present paper the synthesis conditions for fabrication of Bi1−xNdxFeO3ceramics are reported. The single phase polycrystalline samples of Bi1−xNdxFeO3 were prepared by standard solid state reaction method from the mixture of oxides viz.: Bi2O3, Fe2O3and Nd2O3. The samples were characterized by impedance spectroscopy in the frequency range 10Hz – 1MHz at room temperature.


2010 ◽  
Vol 160-162 ◽  
pp. 594-598
Author(s):  
Guo Jian Jiang ◽  
Jia Yue Xu ◽  
Hui Shen ◽  
Yan Zhang ◽  
Lin He Xu ◽  
...  

Zinc silicate-based (Zn2SiO4:Eu3+) long afterglow phosphors were produced by solid state reaction method. The effects of borax and Eu2O3 additive on the properties of fabricated products have been studied. The results show that, there is not much difference in phase compositions within the borax additive amount; however, their SEM morphologies are different. Borax additive can increase the grain size of the product. Some sintering phenomena could be observed in the sample with Eu2O3 addition. The fluorescence spectroscopy results indicate that, the emission peak of the sample with Eu3+ additive located at 612nm, which may be a good candidate for red phosphor applications. The luminescent mechanism of Zn2SiO4:Eu3+ is also discussed.


2015 ◽  
Vol 649 ◽  
pp. 1329-1338 ◽  
Author(s):  
Ishwar Prasad Sahu ◽  
Priya Chandrakar ◽  
R.N. Baghel ◽  
D.P. Bisen ◽  
Nameeta Brahme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document