Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences

1990 ◽  
Vol 212 (4) ◽  
pp. 563-578 ◽  
Author(s):  
Philipp Bucher
mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mrutyunjaya Parida ◽  
Kyle A. Nilson ◽  
Ming Li ◽  
Christopher B. Ball ◽  
Harrison A. Fuchs ◽  
...  

ABSTRACTThe large genome of human cytomegalovirus (HCMV) is transcribed by RNA polymerase II (Pol II). However, it is not known how closely this betaherpesvirus follows host transcriptional paradigms. We applied PRO-Seq and PRO-Cap methods to profile and quantify transcription initiation and productive elongation across the host and virus genomes in late infection. A major similarity between host transcription and viral transcription is that treatment of cells with the P-TEFb inhibitor flavopiridol preempts virtually all productive elongation, which otherwise covers most of the HCMV genome. The deep, nucleotide resolution identification of transcription start sites (TSSs) enabled an extensive analysis of core promoter elements. An important difference between host and viral transcription is that initiation is much more pervasive on the HCMV genome. The sequence preferences in the initiator region around the TSS and the utilization of upstream T/A-rich elements are different. Upstream TATA positions the TSS and boosts initiation in both the host and the virus, but upstream TATT has a significant stimulatory impact only on the viral template. The major immediate early (MIE) promoter remained active during late infection and was accompanied by transcription of both strands of the MIE enhancer from promoters within the enhancer. Surprisingly, we found that the long noncoding RNA4.9 is intimately associated with the viral origin of replication (oriLyt) and was transcribed to a higher level than any other viral or host promoter. Finally, our results significantly contribute to the idea that late in infection, transcription takes place on viral genomes that are not highly chromatinized.IMPORTANCEHuman cytomegalovirus infects more than half of humans, persists silently in virtually all tissues, and produces life-threatening disease in immunocompromised individuals. HCMV is also the most common infectious cause of birth defects and the leading nongenetic cause of sensorineural hearing loss in the United States. Because there is no vaccine and current drugs have problems with potency, toxicity, and antiviral drug resistance, alternative treatment strategies that target different points of viral control are needed. Our current study contributes to this goal by applying newly developed methods to examine transcription of the HCMV and host genomes at nucleotide resolution in an attempt to find targetable differences between the two. After a thorough analysis of productive elongation and of core promoter element usage, we found that some mechanisms of regulating transcription are shared between the host and HCMV but that others are distinctly different. This suggests that HCMV transcription may be a legitimate target for future antiviral therapies and this might translate to other herpesviruses.


2006 ◽  
Vol 73 ◽  
pp. 225-236 ◽  
Author(s):  
Petra Gross ◽  
Thomas Oelgeschläger

The initiation of mRNA synthesis in eukaryotic cells is a complex and highly regulated process that requires the assembly of general transcription factors and RNAP II (RNA polymerase II; also abbreviated as Pol II) into a pre-initiation complex at the core promoter. The core promoter is defined as the minimal DNA region that is sufficient to direct low levels of activator-independent (basal) transcription by RNAP II in vitro. The core promoter typically extends approx. 40 bp up- and down-stream of the start site of transcription and can contain several distinct core promoter sequence elements. Core promoters in higher eukaryotes are highly diverse in structure, and each core promoter sequence element is only found in a subset of genes. So far, only TATA box and INR (initiator) element have been shown to be capable of directing accurate RNAP II transcription initiation independent of other core promoter elements. Computational analysis of metazoan genomes suggests that the prevalence of the TATA box has been overestimated in the past and that the majority of human genes are TATA-less. While TATA-mediated transcription initiation has been studied in great detail and is very well understood, very little is known about the factors and mechanisms involved in the function of the INR and other core promoter elements. Here we summarize our current understanding of the factors and mechanisms involved in core promoter-selective transcription and discuss possible pathways through which diversity in core promoter architecture might contribute to combinatorial gene regulation in metazoan cells.


2007 ◽  
Vol 27 (5) ◽  
pp. 1844-1858 ◽  
Author(s):  
Yumiko Tokusumi ◽  
Ying Ma ◽  
Xianzhou Song ◽  
Raymond H. Jacobson ◽  
Shinako Takada

ABSTRACT The core promoter is a critical DNA element required for accurate transcription and regulation of transcription. Several core promoter elements have been previously identified in eukaryotes, but those cannot account for transcription from most RNA polymerase II-transcribed genes. Additional, as-yet-unidentified core promoter elements must be present in eukaryotic genomes. From extensive analyses of the hepatitis B virus X gene promoter, here we identify a new core promoter element, XCPE1 (the X gene core promoter element 1), that drives RNA polymerase II transcription. XCPE1 is located between nucleotides −8 and +2 relative to the transcriptional start site (+1) and has a consensus sequence of G/A/T-G/C-G-T/C-G-G-G/A-A-G/C+1-A/C. XCPE1 shows fairly weak transcriptional activity alone but exerts significant, specific promoter activity when accompanied by activator-binding sites. XCPE1 is also found in the core promoter regions of about 1% of human genes, particularly in poorly characterized TATA-less genes. Our in vitro transcription studies suggest that the XCPE1-driven transcription can be highly active in the absence of TFIID because it can utilize either free TBP or the complete TFIID complex. Our findings suggest the possibility of the existence of a TAF1 (TFIID)-independent transcriptional initiation mechanism that may be used by a category of TATA-less promoters in higher eukaryotes.


2006 ◽  
Vol 366 ◽  
pp. 308-322 ◽  
Author(s):  
P. Katsaloulis ◽  
T. Theoharis ◽  
W.M. Zheng ◽  
B.L. Hao ◽  
A. Bountis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document