Transport of volatile fission products in the fuel-to-sheath gap of defective fuel elements during normal and reactor accident conditions

1995 ◽  
Vol 218 (1) ◽  
pp. 42-56 ◽  
Author(s):  
B.J. Lewis ◽  
H.W. Bonin
Author(s):  
D. Freis ◽  
D. Bottomley ◽  
J. Ejton ◽  
W. de Weerd ◽  
H. Kostecka ◽  
...  

A new furnace for accident condition testing of spherical High Temperature Reactor (HTR) fuel elements has been installed and is now operating in the Hot Cells of the Institute for Transuranium Elements (ITU) Karlsruhe. The recent apparatus was constructed on the basis of a former development by Forschungszentrum Ju¨lich (FzJ) [Schenk 1988] where it was named Ku¨FA, the German acronym for cold finger apparatus. In a preceding publication [Toscano 2004] the general concept and details of the device were described. The present paper reports on the first operation under hot conditions, the calibration of the fission gas measurement and of the efficiency of the cold finger, which is used to plate out solid fission products. Finally the results of fission product release and analysis of two heating tests on two fuel elements from the HFR K6 irradiation experiment [Nabielek 1993] are presented and discussed.


Author(s):  
D. Freis ◽  
D. Bottomley ◽  
J. Ejton ◽  
W. de Weerd ◽  
H. Kostecka ◽  
...  

A new furnace for accident condition testing of spherical high temperature reactor fuel elements has been installed and now operates in the hot cells of the Institute for Transuranium Elements (ITU) Karlsruhe. The recent apparatus was constructed on the basis of a former development by Forschungszentrum Jülich (Schenk, Pitzer, and Nabielek, 1988, “Fission Product Release Profiles From Spherical HTR Fuel Elements at Accident Temperatures,” Jülich Report No. 2234), where it was named KüFA, the German acronym for cold finger apparatus. In a preceding publication (Kostecka, Ejton, de Weerd, and Toscano, 2004, “Post-Irradiation Testing of HTR-Fuel Elements Under Accident Conditions, Part 1 and 2,” Second International Topical Meeting on High Temperature Reactor Technology, Beijing, China) the general concept and details of the device were described. The present paper reports on the first operation under hot conditions, and the calibration of the fission gas measurement and of the efficiency of the cold finger, which is used to plate out solid fission products. Finally the results of fission product release and analysis of two heating tests on two fuel elements from the high temperature reactor K6 irradiation experiment (Nabielek, Conrad, Roellig, and Meyers, 1993, “Fuel Irradiation Experiments on HFR-K6 and HFR-B1 With Intermittent Water Vapour Injections,” Technical Committee Meeting on Response of Fuel, Fuel Elements and Gas Cooled Reactor Cores Under Accidental Air or Water Ingress Conditions, Beijing, China, Oct. 25–27) are presented and discussed.


2008 ◽  
Vol 73 (10) ◽  
pp. 1340-1356 ◽  
Author(s):  
Katarína Mečiarová ◽  
Laurent Cantrel ◽  
Ivan Černušák

This paper focuses on the reactivity of iodine which is the most critical radioactive contaminant with potential short-term radiological consequences to the environment. The radiological risk assessments of 131I volatile fission products rely on studies of the vapour-phase chemical reactions proceeding in the reactor coolant system (RCS), whose function is transferring the energy from the reactor core to a secondary pressurised water line via the steam generator. Iodine is a fission product of major importance in any reactor accident because numerous volatile iodine species exist under reactor containment conditions. In this work, the comparison of the thermodynamic data obtained from the experimental measurements and theoretical calculations (approaching "chemical accuracy") is presented. Ab initio quantum chemistry methods, combined with a standard statistical-thermodynamical treatment and followed by inclusion of small energetic corrections (approximating full configuration interaction and spin-orbit effects) are used to calculate the spectroscopic and thermodynamic properties of molecules containing atoms H, O and I. The set of molecules and reactions serves as a benchmark for future studies. The results for this training set are compared with reference values coming from an established thermodynamic database. The computed results are promising enough to go on performing ab initio calculations in order to predict thermo-kinetic parameters of other reactions involving iodine-containing species.


2021 ◽  
Vol 7 (4) ◽  
pp. 319-325
Author(s):  
Anastasiya V. Dragunova ◽  
Mikhail S. Morkin ◽  
Vladimir V. Perevezentsev

To timely detect failed fuel elements, a reactor plant should be equipped with a fuel cladding tightness monitoring system (FCTMS). In reactors using a heavy liquid-metal coolant (HLMC), the most efficient way to monitor the fuel cladding tightness is by detecting gaseous fission products (GFP). The article describes the basic principles of constructing a FCTMS in liquid-metal-cooled reactors based on the detection of fission products and delayed neutrons. It is noted that in a reactor plant using a HLMC the fuel cladding tightness is the most efficiently monitored by detecting GFPs. The authors analyze various aspects of the behavior of fission products in a liquid-metal-cooled reactor, such as the movement of GFPs in dissolved and bubble form along the circuit, the sorption of volatile FPs in the lead coolant (LC) and on the surfaces of structural elements, degassing of the GFPs dissolved in the LC, and filtration of cover gas from aerosol particles of different nature. In addition, a general description is given of the conditions for the transfer of GFPs in a LC environment of the reactor being developed. Finally, a mathematical model is presented that makes it possible to determine the calculated activity of reference radionuclides in each reactor unit at any time after the fuel element tightness failure. Based on this model, methods for monitoring the fuel cladding tightness by the gas activity in the gas volumes of the reactor plant will be proposed.


Sign in / Sign up

Export Citation Format

Share Document