Application of the surface-mobility stress corrosion cracking mechanism to nuclear materials

1996 ◽  
Vol 229 ◽  
pp. 139-148 ◽  
Author(s):  
JoséR. Galvele
2018 ◽  
Vol 7 (2) ◽  
pp. 127-146 ◽  
Author(s):  
Markus Piro ◽  
Dion Sunderland ◽  
Winston Revie ◽  
Steve Livingstone ◽  
Ike Dimayuga ◽  
...  

Potential mitigation strategies for preventing stress corrosion cracking (SCC) failures in CANDU fuel cladding that are based on lessons learned on both domestic and international fronts are discussed in this paper. Although SCC failures have not been a major concern in CANDU reactors in recent decades, they may resurface at higher burnup for conventional fuels or with nonconventional fuels that are currently being investigated, such as MOX or thoria-based fuels. The motivation of this work is to provide the foundation for considering possible remedies for SCC failures. Three candidate remedies are discussed, namely improved fabrication methods for fuel appendages, barrier-liner cladding, and fuel doping. In support of this effort, recent advances in experimental characterization methods are described—methods that have been successfully used in non-nuclear materials that can be used to further elucidate SCC behaviour in CANDU fuel. The overall objective is to outline a path forward for characterizing material behaviour as an essential part of investigating remedies to SCC failure. This will allow increased fuel discharge burnup, maximum linear power, and plant manoeuvrability, while maintaining a high degree of reliability.


Author(s):  
Renato Altobelli Antunes ◽  
Mara Cristina Lopes de Oliveira

Stress Corrosion Cracking (SCC) plays a central role in the development of improved structural nuclear materials. Complex interactions between microstructure, alloy composition, manufacturing and environmental factors make the understanding of this phenomenon difficult. This work aimed at reviewing the scientific literature on the SCC behavior of structural nuclear materials in order to identify the main factors that govern this phenomenon. Additionally, the interaction between these factors and materials selection is discussed in order to provide a comprehensive basis for the successful design of metallic materials with improved resistance to SCC.


1988 ◽  
Vol 28 (11) ◽  
pp. 1089-1106 ◽  
Author(s):  
R.B. Rebak ◽  
R.M. Carranza ◽  
J.R. Galvele

Sign in / Sign up

Export Citation Format

Share Document