The propagation of sound waves and neutron waves in bounded plane geometry

1971 ◽  
Vol 11 (6) ◽  
pp. 987-1006 ◽  
Author(s):  
J.S. Cassell ◽  
M.M.R. Williams
Keyword(s):  
1894 ◽  
Vol 70 (25) ◽  
pp. 395-395
Author(s):  
M. Hopkins
Keyword(s):  

2009 ◽  
Vol 12 (6) ◽  
pp. 537-548
Author(s):  
Hamzeh M. Duwairi ◽  
Hazim M. Dwairi

2013 ◽  
Vol 38 (3) ◽  
pp. 335-350 ◽  
Author(s):  
Olexa Piddubniak ◽  
Nadia Piddubniak

Abstract The scattering of plane steady-state sound waves from a viscous fluid-filled thin cylindrical shell weak- ened by a long linear slit and submerged in an ideal fluid is studied. For the description of vibrations of elastic objects the Kirchhoff-Love shell-theory approximation is used. An exact solution of this problem is obtained in the form of series with cylindrical harmonics. The numerical analysis is carried out for a steel shell filled with oil and immersed in seawater. The modules and phases of the scattering amplitudes versus the dimensionless wavenumber of the incident sound wave as well as directivity patterns of the scattered field are investigated taking into consideration the orientation of the slit on the elastic shell surface. The plots obtained show a considerable influence of the slit and viscous fluid filler on the diffraction process.


Author(s):  
David M. Wittman

This chapter shows that the counterintuitive aspects of special relativity are due to the geometry of spacetime. We begin by showing, in the familiar context of plane geometry, how a metric equation separates frame‐dependent quantities from invariant ones. The components of a displacement vector depend on the coordinate system you choose, but its magnitude (the distance between two points, which is more physically meaningful) is invariant. Similarly, space and time components of a spacetime displacement are frame‐dependent, but the magnitude (proper time) is invariant and more physically meaningful. In plane geometry displacements in both x and y contribute positively to the distance, but in spacetime geometry the spatial displacement contributes negatively to the proper time. This is the source of counterintuitive aspects of special relativity. We develop spacetime intuition by practicing with a graphic stretching‐triangle representation of spacetime displacement vectors.


Sign in / Sign up

Export Citation Format

Share Document