scholarly journals Discussion of “dynamic stability of cables subjected to an axial periodic load”

1992 ◽  
Vol 156 (2) ◽  
pp. 361-365 ◽  
Author(s):  
N.C. Perkins
2021 ◽  
Vol 11 (13) ◽  
pp. 6029
Author(s):  
Rustamkhan Abdikarimov ◽  
Marco Amabili ◽  
Nikolai Ivanovich Vatin ◽  
Dadakhan Khodzhaev

The research object of this work is an orthotropic viscoelastic plate with an arbitrarily varying thickness. The plate was subjected to dynamic periodic load. Within the Kirchhoff–Love hypothesis framework, a mathematical model was built in a geometrically nonlinear formulation, taking into account the tangential forces of inertia. The Bubnov–Galerkin method, based on a polynomial approximation of the deflection and displacement, was used. The problem was reduced to solving systems of nonlinear integrodifferential equations. The solution of the system was obtained for an arbitrarily varying thickness of the plate. With a weakly singular Koltunov–Rzhanitsyn kernel with variable coefficients, the resulting system was solved by a numerical method based on quadrature formulas. The computational algorithm was developed and implemented in the Delphi algorithmic language. The plate’s dynamic stability was investigated depending on the plate’s geometric parameters and viscoelastic and inhomogeneous material properties. It was found that the results of the viscoelastic problem obtained using the exponential relaxation kernel almost coincide with the results of the elastic problem. Using the Koltunov–Rzhanitsyn kernel, the differences between elastic and viscoelastic problems are significant and amount to more than 40%. The proposed method can be used for various viscoelastic thin-walled structures such as plates, panels, and shells of variable thickness.


2018 ◽  
Vol 22 (8) ◽  
pp. 2796-2817 ◽  
Author(s):  
Mohammad Hoseinzadeh ◽  
Jalil Rezaeepazhand

The dynamic stability of composite sandwich plates with a smart elastomer layer subjected to an axial periodic load is investigated. A finite element model of the composite sandwich plate with Magnetorheological elastomer (MRE) core is developed. A MRE layer, which its mechanical properties change with the applied magnetic field, is used as a damping layer to improve the stability of the structure. Due to the intrinsic characteristics of the MREs, these materials commonly operate in their pre-yield region. In this region, complex shear modulus is used for these materials. The effect of different parameters such as stacking sequences, boundary conditions, geometry of the sandwich plate, thickness and partial activation of the MRE layer on the damping treatment and stability boundaries is investigated. The presented results show that the application of an MRE layer as a core in the composite sandwich plate changes the stability region of the structure. Therefore, the instability boundaries can be manipulated to achieve the desired dynamic response of the structure.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


2000 ◽  
Author(s):  
Helena Kadlec ◽  
Iris Van Rooij ◽  
Valerie A. Gonzales
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document