scholarly journals Dynamic Stability of Orthotropic Viscoelastic Rectangular Plate of an Arbitrarily Varying Thickness

2021 ◽  
Vol 11 (13) ◽  
pp. 6029
Author(s):  
Rustamkhan Abdikarimov ◽  
Marco Amabili ◽  
Nikolai Ivanovich Vatin ◽  
Dadakhan Khodzhaev

The research object of this work is an orthotropic viscoelastic plate with an arbitrarily varying thickness. The plate was subjected to dynamic periodic load. Within the Kirchhoff–Love hypothesis framework, a mathematical model was built in a geometrically nonlinear formulation, taking into account the tangential forces of inertia. The Bubnov–Galerkin method, based on a polynomial approximation of the deflection and displacement, was used. The problem was reduced to solving systems of nonlinear integrodifferential equations. The solution of the system was obtained for an arbitrarily varying thickness of the plate. With a weakly singular Koltunov–Rzhanitsyn kernel with variable coefficients, the resulting system was solved by a numerical method based on quadrature formulas. The computational algorithm was developed and implemented in the Delphi algorithmic language. The plate’s dynamic stability was investigated depending on the plate’s geometric parameters and viscoelastic and inhomogeneous material properties. It was found that the results of the viscoelastic problem obtained using the exponential relaxation kernel almost coincide with the results of the elastic problem. Using the Koltunov–Rzhanitsyn kernel, the differences between elastic and viscoelastic problems are significant and amount to more than 40%. The proposed method can be used for various viscoelastic thin-walled structures such as plates, panels, and shells of variable thickness.

2021 ◽  
Vol 264 ◽  
pp. 02045
Author(s):  
Mirziyod Mirsaidov ◽  
Rustamkhan Abdikarimov ◽  
Bakhodir Normuminov ◽  
Dadakhan Khodzhaev

The intensive development of the modern industry is associated with the emergence of a variety of new composite materials. Plates, panels, and shells of variable thickness made of such materials are widely used in engineering and machine building. Modern technology for the manufacture of thin-walled structures of any configuration makes it possible to obtain structures with a given thickness variation law. Such thin-walled structures are subjected to various loads, including periodic ones. Nonlinear parametric vibrations of an orthotropic viscoelastic cylindrical panel of variable thickness are investigated without considering the elastic wave propagation. To derive a mathematical model of the problem, the Kirchhoff-Love theory is used in a geometrically nonlinear setting. The viscoelastic properties of a cylindrical panel are described by the hereditary Boltzmann-Volterra theory with a three-parameter Koltunov-Rzhanitsyn relaxation kernel. The problem is solved by the Bubnov-Galerkin method in combination with the numerical method. For the numerical implementation of the problem, an algorithm and a computer program were developed in the Delphi algorithmic language. Nonlinear parametric vibrations of orthotropic viscoelastic cylindrical panels under external periodic load were investigated. The influence of various physical, mechanical, and geometric parameters on the panel behavior, such as the thickness, viscoelastic and inhomogeneous properties of the material, external periodic load, were studied.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Yin-Feng Zhou ◽  
Zhong-Min Wang

2007 ◽  
Vol 307 (1-2) ◽  
pp. 250-264 ◽  
Author(s):  
Zhong-Min Wang ◽  
Yin-Feng Zhou ◽  
Yan Wang

2006 ◽  
Vol 129 (3) ◽  
pp. 285-296 ◽  
Author(s):  
Bakhtiyor Eshmatov ◽  
Subrata Mukherjee

This paper is devoted to mathematical models of problems of nonlinear vibrations of viscoelastic, orthotropic, and isotropic cylindrical panels. The models are based on Kirchhoff-Love hypothesis and Timoshenko generalized theory (including shear deformation and rotatory inertia) in a geometrically nonlinear statement. A choice of the relaxation kernel with three rheological parameters is justified. A numerical method based on the use of quadrature formulas for solving problems in viscoelastic systems with weakly singular kernels of relaxation is proposed. With the help of the Bubnov-Galerkin method in combination with a numerical method, the problems in nonlinear vibrations of viscoelastic orthotropic and isotropic cylindrical panels are solved using the Kirchhoff-Love and Timoshenko hypothesis. Comparisons of the results obtained by these theories, with and without taking elastic waves propagation into account, are presented. In all problems, the convergence of Bubnov-Galerkin’s method has been investigated. The influences of the viscoelastic and anisotropic properties of a material, on the process of vibration, are discussed in this work.


2017 ◽  
Vol 24 (17) ◽  
pp. 3908-3919 ◽  
Author(s):  
Mouafo Teifouet Armand Robinson

The two-dimensional viscoelastic differential constitutive relation is employed in this paper, in order to establish the equation of motion of axially moving viscoelastic rectangular plate. Two boundary conditions are investigated, namely the clamped free and two opposite edges simply supported and two others free. The differential quadrature method is used to solve the resulting complex eigenvalues equation. The influence of boundary conditions on the instability of a moving viscoelastic plate is analyzed firstly, and secondly the effects of system parameters such as plate's viscosity and aspect ratio on the vibration frequencies are presented.


Sign in / Sign up

Export Citation Format

Share Document