A model for predicting growth responses in plants to changes in external water potential: Zea mays primary roots

1973 ◽  
Vol 39 (1) ◽  
pp. 29-45 ◽  
Author(s):  
Philip S. Grenetz ◽  
Albert List
2015 ◽  
Vol 112 (42) ◽  
pp. 12938-12943 ◽  
Author(s):  
Tzer Han Tan ◽  
Jesse L. Silverberg ◽  
Daniela S. Floss ◽  
Maria J. Harrison ◽  
Christopher L. Henley ◽  
...  

Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.


Planta ◽  
1973 ◽  
Vol 115 (2) ◽  
pp. 189-192 ◽  
Author(s):  
I. G. Bridges ◽  
J. R. Hillman ◽  
M. B. Wilkins

Author(s):  
Stefan J. Kupers ◽  
Bettina M. J. Engelbrecht ◽  
Andrés Hernández ◽  
S. Joseph Wright ◽  
Christian Wirth ◽  
...  

2006 ◽  
Vol 58 (2) ◽  
pp. 279-289 ◽  
Author(s):  
V Poroyko ◽  
WG Spollen ◽  
LG Hejlek ◽  
AG Hernandez ◽  
ME LeNoble ◽  
...  

1974 ◽  
Vol 1 (2) ◽  
pp. 247 ◽  
Author(s):  
H Greenway

Excised roots of Z. mays were treated at a water potential of – 20.8 atm, using slowly and rapidly permeating solutes both as osmotica (800 mM ) and as permeants (10 mM ) . The temperature during all experiments was 2�C. The solutes were mannitol, glycerol, and ethylene glycol. In highly vacuolated root tissues there were at least three phases for the influx and efflux of the permeants. These phases presumably represented the free space, the 'cytoplasm', and the 'vacuoIe'. Treatment with slowly permeating osmotica increased the free space of both highly and slightly vacuolated tissues. In highly vacuolated tissues all osmotica doubled the rate of exchange for the 'cytoplasm', but had very little effect on the rate of exchange for the 'vacuole'. The latter observation suggests that the permeability of the tonoplast changed little during plasmolysis. In contrast to highly vacuolated tissues, exposure of slightly vacuolated tissue to osmotica decreased the rates of exchange of the permeant mannitol. Removal of slowly permeating osmotica dramatically increased the permeability of highly vacuolated tissues. Moreover, permeability to rapidly permeating ethylene glycol increased much less than permeability to slowly permeating mannitol and glycerol. These observations suggest that deplasmolysis changed the structure of cell membranes. Permeability of slightly vacuolated tissues was not greatly increased by removal of osmotica. These different effects on the permeability of highly and slightly vacuolated tissues are consistent with earlier results, which showed that removal of slowly permeating osmotica restored metabolism of slightly vacuolated tissues, while it strongly depressed cellular activity of highly vacuolated tissues.


Sign in / Sign up

Export Citation Format

Share Document