Strontium isotopic compositions of Mesozoic granitic rocks in the Hida belt, central Japan: diversities of magma sources and of processes of magma evolution in a continental margin area

Lithos ◽  
1990 ◽  
Vol 24 (4) ◽  
pp. 261-273 ◽  
Author(s):  
Yoji Arakawa

A regional survey of initial Nd and Sr isotopic compositions has been done on Mesozoic and Tertiary granitic rocks from a 500 000 km 2 area in California, Nevada, Utah, Arizona, and Colorado. The plutons, which range in composition from quartz diorite to monzogranite, are intruded into accreted oceanic geosynclmal terrains in the west and north and into Precambrian basement in the east. Broad geographic coverage allows the data to be interpreted in the context of the regional pre-Mesozoic crustal structure. Initial Nd isotopic compositions exhibit a huge range, encompassing values typical of oceanic magmatic arcs and Archean basement. The sources of the magmas can be inferred from the systematic geographic variability of Nd isotopic compositions. The plutons in the accreted terrains represent mantle-derived magma that assimilated crust while differentiating at deep levels. Those emplaced into Precambrian basement are mainly derived from the crust. The regional patterns can be understood in terms of: (1) the flux of mantle magma entering the crust; (2) crustal thickness; and (3) crustal age. The mantle magma flux apparently decreased inland; in the main batholith belts purely crustal granitic rocks are not observed because the flux was too large. Inland, crustal granite is common because mantle magma was scarce and the crust was thick, and hot enough to melt. The values of peraluminous granite formed by melting of the Precambrian basement depend on the age of the local basement source.


2020 ◽  
Author(s):  
Aoife Blowick ◽  
et al.

S1: Statistical Analysis of Pb isotopes in K-feldspar; S2: Pb isotopic compositions of K-feldspars; S3: Thorogenic Pb Plots.


1968 ◽  
Vol 5 (3) ◽  
pp. 643-648 ◽  
Author(s):  
Tatsuro Matsumoto ◽  
Masaru Yamaguchi ◽  
Takeru Yanagi ◽  
Susumu Matsushita ◽  
Ichikazu Hayase ◽  
...  

We have examined some of the presumed Precambrian basement metamorphic and granitic rocks in Japan, through radiometric dating as well as on field evidence, and have found that mineral ages of about 175 to 250 m.y. are abundant in the Hida area, northwestern part of central Japan, that a number of thrust rocks in southwestern Japan show ages of 400 to 450 m.y., and that the oldest of the measured samples is about or somewhat over 500 m.y. Little evidence is available to support a view that the Pre-Sinian rocks, if ever existent, have remained unaltered under such a polycyclic orogenic zone as that represented by Japan, although remnants of the youngest Precambrian to Early Paleozoic cycle can be detected.


1979 ◽  
Vol 16 (3) ◽  
pp. 770-791 ◽  
Author(s):  
J. W. H. Monger ◽  
R. A. Price

The present geodynamic pattern of the Canadian Cordillera, the main features of which were probably established in Miocene time, involves a combination of right-hand strike-slip movements on transform faults along the continental margin, and, in the south and extreme north, convergence in subduction zones in which oceanic lithosphere moves beneath the continent, with consequent magmatism along the continental margin. In the southern Canadian Cordillera, geophysical surveys have outlined the subducting slab and the asthenospheric bulge that occurs beneath and behind the magmatic arc. They also show that there is now no root of thickened Precambrian continental crust beneath the tectonically shortened supracrustal strata in the southern parts of the Omineca Crystalline Belt and Rocky Mountain Belt.The Rocky Mountain, Omineca Crystalline, Intermontane, Coast Plutonic, and Insular Belts, the structural and physiographic provinces that dominate the present configuration of the Canadian Cordillera, were established with the initial uplift and the intrusion of granitic rocks in the Omineca Crystalline Belt in Middle and Late Jurassic time and in the Coast Plutonic Complex in Early Cretaceous time, and they dominated patterns of uplift, erosion and deposition through Cretaceous and Paleogene time. Their development may be due to compression with thrust faulting in the eastern Cordillera, and to magmatism that accompanied subduction and to accretion of an exotic terrane, Wrangellia, in the western Cordillera. Major right-lateral strike-slip faulting, which occurred well east of but sub-parallel with the continental margin during Late Cretaceous and Paleogene time, accompanied major tectonic shortening due to thrusting and folding in the Rocky Mountain Belt as well as the main subduction-related (?) magmatism in the Coast Plutonic Complex.The configuration of the western Cordillera prior to late Middle Jurassic time is enigmatic. Late Paleozoic and early Mesozoic volcanogenic strata form a complex collage of volcanic arcs and subduction complexes that was assembled mainly in the Mesozoic. The change in locus of deposition between Upper Triassic and Lower to Middle Jurassic volcanogenic assemblages, and the thrust faulting in the northern Cordillera may record emplacement of another exotic terrane, the Stikine block, in latest Triassic to Middle Jurassic time.The earliest stage in the evolution of the Cordilleran fold belt involved the protracted (1500 to 380 Ma) development of a northeasterly tapering sedimentary wedge that discordantly overlaps Precambrian structures of the cratonic basement. This miogeoclinal wedge may be a continental margin terrace wedge that was prograded into an ocean basin, but it has features that may be more indicative of progradation into a marginal basin in which there was intermittent volcanic activity, than into a stable expanding ocean basin of the Atlantic type.


Sign in / Sign up

Export Citation Format

Share Document