magma evolution
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 67)

H-INDEX

37
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1295
Author(s):  
Peijia Chen ◽  
Nianqiao Fang ◽  
Xiaobo Yuan

The Sanshui Basin is located at the northern continental margin of the South China Sea and characterized by a continental rift basin. The bimodal volcanic rocks in Sanshui Basin record the early Cenozoic magmatic activity in the South China Block, but the magmatic evolution that produced the bimodal volcanic rocks is poorly understood. Clinopyroxenes in bimodal volcanic rocks in the Sanshui Basin provide an opportunity to investigate magma during magma ascent. In this work, we classified nine types of clinopyroxene phenocrysts according to composition and texture in cogenetic basalt-trachyandesite-comenditic trachyte, while the composition of unzoned clinopyroxene have an evolution sequence of diopside-hedenbergite-aegirine along with an increase in trace element contents with a decrease of Mg#, indicating that the genesis of clinopyroxene was dominated by fractional crystallization in a closed magma system. However, the clinopyroxenes with reversed zoning and multiple zoning record the process of magma mixing and recharge indicating an open magma system. While fractional crystallization is the dominant process, magma mixing, recharge, and crystal settling were also found to influence magma evolution. Thermobarometric calculations showed that clinopyroxene crystallized a several structural levels in the crust during magma ascent. In this study, we established a magma plumbing system that provides new constraints for the magma evolution in the Sanshui Basin.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1363
Author(s):  
Beiqi Zheng ◽  
Meihua Chen

Few studies have focused on gem-quality tourmaline acting as a petrogenetic recorder, and the colour genesis of pink elbaite is still controversial. We carry out in situ major, trace element and boron isotope composition analyses on a single tourmaline crystal. This crystal is characterized by sudden transformation from colourless to pink, which can represent full pegmatite magma evolution. According to the analysis results, all spots are divided into alkali groups according to X-site occupancy and subdivided into elbaite series. The pink part accommodates higher concentrations of volatile and incompatible elements. The result is most consistent with successive pegmatite evolution in which the colourless part crystallized from the early stage, while the pink part crystallized from the late stage. The relatively consistent δ11B value between the colourless and the pink part suggests no fluid exsolution occurred during pegmatite evolution. The slight increase of δ11B values within the pink part and the colourless part may be due to mica crystallization. The combination of (Li++Mn2+) (Al3++Xvac)-1 and the exclusive positive linear relationship of Mn2+ vs. Ti4+ indicate that Mn2+ is the main cause of pink, while Mn2+-Ti4+ intervalence charge transfer also plays an important role.


Author(s):  
Peijia Chen ◽  
Nianqiao Fang ◽  
Xiaobo Yuan

The Sanshui Basin (SSB) is located at the northern continental margin of the South China Sea and characterized by a continental rift basin. The bimodal volcanic rocks in SSB record the early Cenozoic magmatic activity in the South China Block, on the magmatic evolution process of bimodal volcanic rocks are poorly understood. Clinopyroxenes in bimodal volcanic rocks in the SSB provide an opportunity to investigate the magma process during magma ascent. We classified nine types of clinopyroxene phenocrysts according to the different compositions and textures types in cogenetic basalt-trachyandesite-comenditic trachyte, the composition of unzoned clinopyroxene have an evolution sequence of diopside- hedenbergite- aegirine with the decrease of Mg#, and the trace element contents of unzoned clinopyroxenes also increase systematically during magma evolution, indicating that the genesis of clinopyroxene dominated by fractional crystallization in a closed magma system; however, the clinopyroxenes with reverse zoning and multiple zoning record the process of magma mixing and recharge indicating an open magma system. Whilst fractional crystallization is the dominated process, magma mixing, recharge, and crystal settling complicate magma evolution. Thermobarometric calculations show that clinopyroxene phenocrysts in bimodal volcanic rocks of SSB are distributed in the whole crust during magma ascent. We have established a magma plumbing system, which provides a new constrain for the complex magmatic evolution history in the SSB by detailed mineral-scale analysis.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1204
Author(s):  
Yuan Xue ◽  
Ningyue Sun ◽  
Guowu Li

Previous geochemical and petrological studies have concluded that initially magmatic Nb–Ta mineralization is often modified by post-magmatic hydrothermal fluids; however, there is still a lack of mineralogical evidence for the syenite-related Nb–Ta deposit. From the perspective of Nb–Ta minerals, the pyrochlore supergroup minerals have significance for indicating the fluid evolution of alkaline rock or related carbonatite type Nb–Ta deposits. The Panzhihua–Xichang (Panxi) region is a famous polymetallic metallogenic belt in southwestern China, abound with a huge amount of Nb–Ta mineralized syenitic dikes. This study focuses on the mineral textures and chemical compositions of the main Nb–Ta oxide minerals (including columbite-(Fe), fersmite, fergusonite-(Y), and especially pyrochlore group minerals) in samples from the Baicao and Xiaoheiqing deposits, in the Huili area, Panxi region, to reveal the magma evolution process of syenitic-dike-related Nb–Ta deposits. The Nb–Ta oxides in the Huili syenites are commonly characterized by a specific two-stage texture on the crystal scale, exhibiting a complex metasomatic structure and compositional zoning. Four types of pyrochlore group minerals (pyrochlores I, II, III, and IV) formed in different stages were identified. The euhedral columbite-(Fe), fersmite, and pyrochlores I and II minerals formed in the magmatic fractional crystallization stage. Anhedral pyrochlore III minerals are linked to the activity of magma-derived hydrothermal fluids at the late stages of magma evolution. The pyrochlore IV minerals and fergusonite-(Y) tend to be more concentrated in areas that have undergone strong albitization, which is a typical phenomenon of hydrothermal alteration. These mineralogical phenomena provide strong evidences that the magmatic-hydrothermal transitional stage is the favored model for explaining the Nb–Ta mineralization process. It is also concluded that the changes in chemical composition and texture characteristics for pyrochlore group minerals could serve as a proxy for syenite-related Nb–Ta mineralization processes.


2021 ◽  
Author(s):  
C. E. Wade ◽  
J. L. Payne ◽  
K. Barovich ◽  
S. Gilbert ◽  
B. P. Wade ◽  
...  

Abstract Extrusive and intrusive felsic magmas occur throughout the evolution of silicic-dominated large igneous province magmatism that is temporally related to numerous economically significant iron oxide copper-gold (IOCG) deposits in southern Australia. We investigate zircon trace element signatures of the felsic magmas to assess whether zircon composition can be related to fertility of the volcanic and intrusive suites within IOCG-hosted mineral provinces. Consistent with zircon forming in oxidizing magmatic conditions, the rare earth element (REE) patterns of zircon sourced from both extrusive and intrusive magmatic rocks are characterized by light REE depletions and a range of positive Ce and negative Eu anomalies. The timing of the major phase of IOCG mineralization overlaps with the early part of the first phase of Lower Gawler Range Volcanics magmatism (1593.6–1590.4 Ma) and older intrusive magmatism of the Hiltaba Suite (1593.06–1590.50 Ma). Zircon in these mineralization-related intrusives and extrusives is distinguished from zircon in younger, mineralization-absent rocks by higher Eu/Eu*, Ce/Ce*, and Ti values and separate magma evolution paths with respect to Hf. These zircon characteristics correspond to lower degrees of fractionation and/or crustal assimilation, more oxidizing magmatic conditions, and higher magmatic temperatures, respectively, in magmas coeval with mineralization. In this respect, we consider higher oxidation state, lower degrees of fractionation, and higher magmatic temperatures to be features of fertile magmas in southern Australian IOCG terrains. Similar zircon REE characteristics are shared between magmas associated with southern Australian IOCG and iron oxide-apatite (IOA) rhyolites from the St. Francois Mountains, Missouri, namely high Ce/Ce* and high Dy/Yb, indicative of oxidized and dry magmas, respectively. The dry and more fractionated nature of the IOCG- and IOA-associated magmas contrasts with the hydrous and unfractionated nature of fertile porphyry Cu deposit magmas. As indicated by high Ce/Ce* ratios, the oxidized nature is considered a key element in magma fertility in IOCG-IOA terrains. In both IOCG and IOA terrains, the trace element compositions of zircon are able to broadly differentiate fertile from nonfertile magmatic rocks.


Sign in / Sign up

Export Citation Format

Share Document