Stress hormone and amino acid infusion in healthy volunteers: Short-term effects on protein synthesis and amino acid metabolism in skeletal muscle

Metabolism ◽  
1994 ◽  
Vol 43 (9) ◽  
pp. 1158-1163 ◽  
Author(s):  
Folke Hammarqvist ◽  
Alexandra von der Decken ◽  
Erik Vinnars ◽  
Jan Wernerman
2002 ◽  
Vol 27 (6) ◽  
pp. 646-662 ◽  
Author(s):  
Donald K. Layman

Exercise produces changes in protein and amino acid metabolism. These changes include degradation of the branched-chain amino acids, production of alanine and glutamine, and changes in protein turnover. One of the amino acid most affected by exercise is the branched-chain amino acid leucine. Recently, there has been an increased understanding of the role of leucine in metabolic regulations and remarkable new findings about the role of leucine in intracellular signaling. Leucine appears to exert a synergistic role with insulin as a regulatory factor in the insulin/phosphatidylinositol-3 kinase (PI3-K) signal cascade. Insulin serves to activate the signal pathway, while leucine is essential to enhance or amplify the signal for protein synthesis at the level of peptide initiation. Studies feeding amino acids or leucine soon after exercise suggest that post-exercise consumption of amino acids stimulates recovery of muscle protein synthesis via translation regulations. This review focuses on the unique roles of leucine in amino acid metabolism in skeletal muscle during and after exercise. Key words: branched-chain amino acids, insulin, protein synthesis, skeletal muscle


1993 ◽  
Vol 264 (6) ◽  
pp. E958-E965 ◽  
Author(s):  
P. H. McNulty ◽  
L. H. Young ◽  
E. J. Barrett

Whether insulin, at physiological concentrations, stimulates net muscle protein synthesis in vivo remains unresolved. To examine this, we infused either saline, insulin (2.8 mU.kg-1.min-1, euglycemic clamp), an amino acid solution, or insulin plus amino acids for 4 h into awake overnight-fasted rats. Heart and skeletal muscle protein synthesis was measured by either a continuous tracer infusion method, using L-[1-14C]leucine, L-[2,5-3H]leucine, or L-[ring-2,6-3H]phenylalanine or by injection of L-[ring-2,6-3H]phenylalanine with a pool-flooding bolus of unlabeled phenylalanine. In heart, synthesis rates obtained using the arterial plasma specific activity of [3H]phenylalanine administered as either a tracer infusion or flooding bolus were comparable in saline-treated rats (range 10.9 +/- 1.2 to 12.2 +/- 0.9%/day) and were not affected by infusion of insulin or amino acids. Estimates using continuous infusion of L-[1-14C]leucine were significantly lower (P < 0.001), except when unlabeled amino acids were given also. In skeletal muscle, rates estimated using the flooding bolus (6.7 +/- 0.8%/day) were also not affected by insulin or amino acids. Estimates using continuous infusion of [3H]leucine (2.6 +/- 0.3%/day) or [3H]phenylalanine (2.8 +/- 1.0%/day) were lower and were still lower using [14C]leucine (1.6 +/- 0.6%/day), but increased toward those estimated with the flooding bolus during amino acid infusion. We conclude that, in heart muscle of the mature rat in vivo, neither insulin nor amino acids affect protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 98 (11) ◽  
pp. 7944-7961 ◽  
Author(s):  
M. Larsen ◽  
C. Galindo ◽  
D.R. Ouellet ◽  
G. Maxin ◽  
N.B. Kristensen ◽  
...  

2000 ◽  
Vol 279 (2) ◽  
pp. E301-E306 ◽  
Author(s):  
W. Long ◽  
L. Saffer ◽  
L. Wei ◽  
E. J. Barrett

Refeeding reverses the muscle protein loss seen with fasting. The physiological regulators and cellular control sites responsible for this reversal are incompletely defined. Phosphorylation of phosphorylated heat-acid stabled protein (PHAS-I) frees eukaryotic initiation factor 4E (eIF4E) and stimulates protein synthesis by accelerating translation initiation. Phosphorylation of p70 S6-kinase (p70S6k) is thought to be involved in the regulation of the synthesis of some ribosomsal proteins and other selected proteins with polypyrimidine clusters near the transcription start site. We examined whether phosphorylation of PHAS-I and p70S6k was increased by feeding and determined the separate effects of insulin and amino acids on PHAS-I and p70S6k phosphorylation in rat skeletal muscle in vivo. Muscle was obtained from rats fed ad libitum or fasted overnight ( n = 5 each). Other fasted rats were infused with insulin (3 μU · min−1 · kg−1, euglycemic clamp), amino acids, or the two combined. Gastrocnemius was freeze-clamped, and PHAS-I and p70S6k phosphorylation was measured by quantifying the several phosphorylated forms of these proteins seen on Western blots. We observed that feeding increased phosphorylation of both PHAS-I and p70S6k ( P < 0.05). Infusion of amino acids alone reproduced the effect of feeding. Physiological hyperinsulinemia increased p70S6K ( P< 0.05) but not PHAS-I phosphorylation ( P = 0.98). Addition of insulin to amino acid infusion was no more effective than amino acids alone in promoting PHAS-I and p70S6kphosphorylation. We conclude that amino acid infusion alone enhances the activation of the protein synthetic pathways in vivo in rat skeletal muscle. This effect is not dependent on increases in plasma insulin and simulates the activation of protein synthesis that accompanies normal feeding.


1986 ◽  
Vol 250 (4) ◽  
pp. E407-E413 ◽  
Author(s):  
R. A. Gelfand ◽  
M. G. Glickman ◽  
R. Jacob ◽  
R. S. Sherwin ◽  
R. A. DeFronzo

To compare the contributions of splanchnic and skeletal muscle tissues to the disposal of intravenously administered amino acids, regional amino acid exchange was measured across the splanchnic bed and leg in 11 normal volunteers. Postabsorptively, net release of amino acids by leg (largely alanine and glutamine) was complemented by the net splanchnic uptake of amino acids. Amino acid infusion via peripheral vein (0.2 g X kg-1 X h-1) caused a doubling of plasma insulin and glucagon levels and a threefold rise in blood amino acid concentrations. Both splanchnic and leg tissues showed significant uptake of infused amino acids. Splanchnic tissues accounted for approximately 70% of the total body amino acid nitrogen disposal; splanchnic uptake was greatest for the glucogenic amino acids but also included significant quantities of branched-chain amino acids. In contrast, leg amino acid uptake was dominated by the branched-chain amino acids. Based on the measured leg balance, body skeletal muscle was estimated to remove approximately 25-30% of the total infused amino acid load and approximately 65-70% of the infused branched-chain amino acids. Amino acid infusion significantly stimulated both the leg efflux and the splanchnic uptake of glutamine (not contained in the infusate). We conclude that when amino acids are infused peripherally in normal humans, splanchnic viscera (liver and gut) are the major sites of amino acid disposal.


1978 ◽  
Vol 96 (3) ◽  
pp. 309-317 ◽  
Author(s):  
William M. Pardridge ◽  
Mayer B. Davidson ◽  
Delia Casanello-Ertl

2011 ◽  
Vol 253 (3) ◽  
pp. 592-597 ◽  
Author(s):  
Demidmaa Tuvdendorj ◽  
David L. Chinkes ◽  
Xiao-Jun Zhang ◽  
Melinda Sheffield-Moore ◽  
David N. Herndon

Sign in / Sign up

Export Citation Format

Share Document