Small-signal characteristics of semiconductor punch-through injection and transit-time diedes

1973 ◽  
Vol 12 (6) ◽  
pp. 500
2019 ◽  
Vol 954 ◽  
pp. 176-181
Author(s):  
Ming Chang He ◽  
Li Xia Hu ◽  
Jun Ding Zheng ◽  
Wen Sheng Wei ◽  
Hai Lin Xiao ◽  
...  

SiC heteropolytype structures indicate important applications in high frequency, large power solid devices etc. In this paper, the impact avalanche transit time (IMPATT) and mixed tunneling avalanche transit time (MITATT) diodes with heteropolytype consisting of two semiconductors among the 3C-SiC, 4H-SiC and 6H-SiC are numerically simulated to investigate the static state and small signal characteristics at the atmospheric window frequency of 1.56 THz. The breakdown voltage, avalanche voltage, peak value of static electric field, the maximum generation rates of avalanche and tunneling, power conversion efficiency, admittance-frequency relation of the proposed SiC heteropolytype diodes are calculated, respectively. Comparing the obtained parameters of IMPATT diodes with those of MITATT devices, the results imply that tunneling shows little influence on the small signal performance of the heteropolytype IMPATT diodes included 3C-SiC material, which is different from those of the homopolytype counterparts.


1995 ◽  
Vol 30 (3) ◽  
pp. 327-330 ◽  
Author(s):  
P. Wambacq ◽  
F.V. Fernandez ◽  
G. Gielen ◽  
W. Sansen ◽  
A. Rodriguez-Vazquez

2002 ◽  
Vol 742 ◽  
Author(s):  
Ho-Young Cha ◽  
Christopher I. Thomas ◽  
Goutam Koley ◽  
Lester F. Eastman ◽  
Michael G. Spencer

ABSTRACTChannel-recessed 4H-SiC MESFETs were fabricated and demonstrated excellent small signal characteristics. A saturated current of 250 − 270 mA/mm at Vgs = 0 V and a maximum transconductance of 40 − 45 mS/mm were measured for channel-recessed devices with a gate length of 0.45 m. The three-terminal breakdown voltages (Vds) range from 120 V to 150 V. The Ft and Fmax of the 2 × 200 m devices were measured to be 14.5 GHz and 40 GHz, respectively. The channel recess technique results in a lower saturation current but higher breakdown voltage which makes it possible for the devices to operate at high voltages. Si3N4 passivation suppresses the instability in DC characteristics and improves CW power performance by reducing the surface effects. Less dispersion in the drain current during a power sweep was observed after passivation.


Sign in / Sign up

Export Citation Format

Share Document