Oxygen and carbon isotopic composition and biogeographic distribution of planktonic foraminifera in the Indian Ocean

1981 ◽  
Vol 33 (1-3) ◽  
pp. 9-46 ◽  
Author(s):  
J.C. Duplessy ◽  
A.W.H. Bé ◽  
P.L. Blanc
2005 ◽  
Vol 71 (9) ◽  
pp. 5440-5450 ◽  
Author(s):  
Yohey Suzuki ◽  
Takenori Sasaki ◽  
Masae Suzuki ◽  
Yuichi Nogi ◽  
Tetsuya Miwa ◽  
...  

ABSTRACT The hydrothermal-vent gastropod Alviniconcha aff. hessleri from the Kairei hydrothermal field on the Central Indian Ridge houses bacterium-like cells internally in its greatly enlarged gill. A single 16S rRNA gene sequence was obtained from the DNA extract of the gill, and phylogenetic analysis placed the source organism within a lineage of the epsilon subdivision of the Proteobacteria. Fluorescence in situ hybridization analysis with an oligonucleotide probe targeting the specific epsilonproteobacterial subgroup showed the bacterium densely colonizing the gill filaments. Carbon isotopic homogeneity among the gastropod tissue parts, regardless of the abundance of the endosymbiont cells, suggests that the carbon isotopic composition of the endosymbiont biomass is approximately the same as that of the gastropod. Compound-specific carbon isotopic analysis revealed that fatty acids from the gastropod tissues are all 13C enriched relative to the gastropod biomass and that the monounsaturated C16 fatty acid that originates from the endosymbiont is as 13C enriched relative to the gastropod biomass as that of the epsilonproteobacterial cultures grown under chemoautotrophic conditions. This fractionation pattern is most likely due to chemoautotrophy based on the reductive tricarboxylic-acid (rTCA) cycle and subsequent fatty acid biosynthesis from 13C-enriched acetyl coenzyme A. Enzymatic characterization revealed evident activity of several key enzymes of the rTCA cycle, as well as the absence of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in the gill tissue. The results from anatomic, molecular phylogenetic, bulk and compound-specific carbon isotopic, and enzymatic analyses all support the inference that a novel nutritional strategy relying on chemoautotrophy in the epsilonproteobacterial endosymbiont is utilized by the hydrothermal-vent gastropod from the Indian Ocean. The discrepancies between the data of the present study and those of previous ones for Alviniconcha gastropods from the Pacific Ocean imply that at least two lineages of chemoautotrophic bacteria, phylogenetically distinct at the subdivision level, occur as the primary endosymbiont in one host animal type.


2019 ◽  
Vol 59 (6) ◽  
pp. 1074-1085
Author(s):  
E. A. Sokolova

The article analyzes own data on the species composition of shells of planktonic foraminifera from the Upper Cretaceous sediments of the Indian Oceans, as well as from the sections of the offshore seas of Australia. The species of planktonic foraminifera are grouped and arranged in a climatic series. An analysis of the change in the systematic composition of foraminifers made it possible to distinguish periods of extreme and intermediate climatic states in the Late Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document