Response in the inhibitor efficiency of substituted phenols on ps II activity in six mutants of the D1 protein subunit in Chlamydomonas reinhardtii

1993 ◽  
Vol 33 (5) ◽  
pp. 969-977 ◽  
Author(s):  
A. Trebst ◽  
U. Hilp ◽  
W. Draber
1982 ◽  
Vol 37 (3-4) ◽  
pp. 256-259 ◽  
Author(s):  
F. Schuler ◽  
P. Brandt ◽  
W. Wießner

Abstract An improved method for isolation of (photosystem II)-particles from Euglena gracilis, strain Z was established. PS II-particles isolated by ultrasonic treatment and following differential centrifugation show fluorescence emission and absorption spectra identical with in vivo properties of Euglena gracilis. These PS II-particles have only PS II-activity and contain CP a, the typical chlorophyll-protein-complex of PS II. No contamination of PS I-components are detectable.


2012 ◽  
Vol 157 (4) ◽  
pp. 613-619 ◽  
Author(s):  
Alberto Scoma ◽  
Danuta Krawietz ◽  
Cecilia Faraloni ◽  
Luca Giannelli ◽  
Thomas Happe ◽  
...  

Talanta ◽  
2021 ◽  
Vol 224 ◽  
pp. 121854
Author(s):  
Maria Teresa Giardi ◽  
Daniele Zappi ◽  
Mehmet Turemis ◽  
Gabriele Varani ◽  
Fabrizio Lo Celso ◽  
...  

1976 ◽  
Vol 71 (1) ◽  
pp. 136-158 ◽  
Author(s):  
L A Staehelin

Freeze-fracture and freeze-etch techniques have been employed to study the supramolecular structure of isolated spinach chloroplast membranes and to monitor structural changes associated with in vitro unstacking and restacking of these membranes. High-resolution particle size histograms prepared from the four fracture faces of normal chloroplast membranes reveal the presence of four distinct categories of intramembranous particles that are nonrandomly distributed between grana and stroma membranes. The large surface particles show a one to one relationship with the EF-face particles. Since the distribution of these particles between grana and stroma membranes coincides with the distribution of photosystem II (PS II) activity, it is argued that they could be structural equivalents of PS II complexes. An interpretative model depicting the structural relationship between all categories of particles is presented. Experimental unstacking of chloroplast membranes in low-salt medium for at least 45 min leads to a reorganization of the lamellae and to a concomitant intermixing of the different categories of membrane particles by means of translational movements in the plane of the membrane. In vitro restacking of such experimentally unstacked chloroplast membranes can be achieved by adding 2-20 mM MgCl2 or 100-200 mM NaCl to the membrane suspension. Membranes allowed to restack for at least 1 h at room temperature demonstrate a resegregation of the EF-face particles into the newly formed stacked membrane regions to yield a pattern and a size distribution nearly indistinguishable from the normally stacked controls. Restacking occurs in two steps: a rapid adhesion of adjoining stromal membrane surfaces with little particle movement, and a slower diffusion of additional large intramembranous particles into the stacked regions where they become trapped. Chlorophyll a:chlorophyll b ratios of membrane fraction obtained from normal, unstacked, and restacked membranes show that the particle movements are paralleled by movements of pigment molecules. The directed and reversible movements of membrane particles in isolated chloroplasts are compared with those reported for particles of plasma membranes.


2001 ◽  
Vol 29 (4) ◽  
pp. 427-430 ◽  
Author(s):  
Z. Adam ◽  
O. Ostersetzer

To study protein degradation in thylakoid membranes we identified, characterized and cloned thylakoid proteases, and then linked them to known proteolytic processes. Several families of chloroplast proteases were identified and characterized to different extents. FtsH, an ATP-dependent metalloprotease that belongs to the AAA-protein family, was found to be integral to the thylakoid membrane, facing the stroma. It is involved in both the degradation of unassembled subunits of membrane complexes, such as the Rieske Fe-S protein of the cytochrome complex, and the degradation of oxidatively damaged proteins such as the D1 protein of the photosystem II (PS II) reaction centre. Plant genomes contain multiple isomers of this protease but the functional significance of this multiplication is not clear yet. A second protease, the serine ATP-independent DegP, was found to be strongly associated with the luminal side of the thylakoid membrane. Although a specific role has not yet assigned for it, its location suggests that it can degrade luminal soluble proteins as well as luminally exposed regions of thylakoid membrane proteins.


2006 ◽  
Vol 84 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Stephan Wilski ◽  
Udo Johanningmeier ◽  
Silvia Hertel ◽  
Walter Oettmeier

Sign in / Sign up

Export Citation Format

Share Document