bioactive component
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 122)

H-INDEX

26
(FIVE YEARS 6)

Author(s):  
Xiu Qing Chong ◽  
Kirtani AP Anamalay ◽  
Okechukwu Patrick Nwabueze ◽  
Hor Kuan Chan

Recently, extensive research has been conducted to evaluate the inhibitory activity of different plant species on the advanced glycation end products (AGEs). L. sibiricus is a traditional herb that has been used for postpartum confinement meals in Sarawak, Malaysia and pharmacologically possess anti-hemorrhagic, antioxidant, anti-diabetic, and anti-cancer. The aim of this research was to evaluate the antioxidant, anti-AGEs, and preliminary biochemical screening of bioactive component present in L. sibiricus in water extract. Free radical scavenging activity of L. sibiricus was evaluated via DPPH, hydroxyl radical, nitric oxide, lipid peroxidation, chelating capacity, and total phenolic content was evaluated comparing with gallic acid. Inhibition of formation AGEs by L. sibiricus was evaluated using BSA-MGO, BSA-glucose and MGO scavenging assays. Flavonoids, phenols, saponins, alkaloids, phytosterol, and diterpenoids were identified in L. sibiricus extract. It also seems to inhibit early and late formation of AGE and MGO scavenging ability. L. sibiricus was able to inhibit the formation of early and late formation of AGE through the scavenging of the formation of reactive dicarbonyl intermediates and reduce the formation of methylquinoxaline adducts through the scavenge of MGO. The inhibition of AGEs formation by L. sibiricus maybe due its antioxidant property and the presence phytochemical bioactive constituents which has been previously reported to possess antioxidant and anti-AGE activity. Future research is ongoing to identify the adducts formed because of MGO scavenging by L. sibiricus using HPLC.


2021 ◽  
Author(s):  
Weifeng Li ◽  
Qiuxia Huang ◽  
Jinjin Yu ◽  
Jiabao Yu ◽  
Yajie Yang ◽  
...  

Abstract Schisandrin (Sch) is a main bioactive component of Schisandra sphenanthera Rehd.et Wils. It has been reported that Sch could regulate inflammatory disease. This study evaluated the anti-inflammatory and anti-oxidant effects effect of Sch on lipopolysaccharide (LPS)-induced macrophages activation and acute kidney injury mice. Male Kunming mice were intraperitoneally injected with LPS (15 mg/kg) after administration of Sch (12.5, 25, 50 mg/kg) seven days for developing acute kidney injury vivo model. RAW264.7 macrophages were pretreatment Sch (10, 20, 40 µM) and administrated LPS (1 µg/ml) to create an in vitro injury model. ELISA results found that Sch administration reduced the production of inflammatory factors induced by LPS in kidney tissues and RAW264.7 macrophages. It has been observed that Sch alleviated oxidative stress by reducing the levels of reactive oxygen species, myeloperoxidase and malondialdehyde, and increasing the activity of superoxide dismutase and glutathione peroxidase. Hematoxylin-eosin staining data suggested that Sch administration significantly reduced inflammatory cell infiltration and the kidney tissue damage induced by LPS. The blood urea nitrogen and creatinine levels were also reduced by Sch treatment. In addition, Western blot and immunohistochemical analysis showed that Sch up-regulated the expression of Nrf2 and HO-1, and decreased the expression of p-p38, p-JNK, p-ERK1/2, p-IκBα, p-NF-κBp65 and TLR4. The current research showed that Sch reduced LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress, and provided insights into potential ways to treat AKI.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1972
Author(s):  
Ching-Hou Ma ◽  
Wan-Ching Chou ◽  
Chin-Hsien Wu ◽  
I-Ming Jou ◽  
Yuan-Kun Tu ◽  
...  

The upregulation of tumor necrosis factor-alpha (TNF-α) is a common event in arthritis, and the subsequent signaling cascade that leads to tissue damage has become the research focus. To explore a potential therapeutic strategy to prevent cartilage degradation, we tested the effect of ginsenoside Rg3, a bioactive component of Panax ginseng, on TNF-α-stimulated chondrocytes.TC28a2 Human Chondrocytes were treated with TNF-α to induce damage of chondrocytes. SIRT1 and PGC-1a expression levels were investigated by Western blotting assay. Mitochondrial SIRT3 and acetylated Cyclophilin D (CypD) were investigated using mitochondrial isolation. The mitochondrial mass number and mitochondrial DNA copy were studied for mitochondrial biogenesis. MitoSOX and JC-1 were used for the investigation of mitochondrial ROS and membrane potential. Apoptotic markers, pro-inflammatory events were also tested to prove the protective effects of Rg3. We showed Rg3 reversed the TNF-α-inhibited SIRT1 expression. Moreover, the activation of the SIRT1/PGC-1α/SIRT3 pathway by Rg3 suppressed the TNF-α-induced acetylation of CypD, resulting in less mitochondrial dysfunction and accumulation of reactive oxygen species (ROS). Additionally, we demonstrated that the reduction of ROS ameliorated the TNF-α-elicited apoptosis. Furthermore, the Rg3-reverted SIRT1/PGC-1α/SIRT3 activation mediated the repression of p38 MAPK, which downregulated the NF-κB translocation in the TNF-α-treated cells. Our results revealed that administration of Rg3 diminished the production of interleukin 8 (IL-8) and matrix metallopeptidase 9 (MMP-9) in chondrocytes via SIRT1/PGC-1α/SIRT3/p38 MAPK/NF-κB signaling in response to TNF-α stimulation. Taken together, we showed that Rg3 may serve as an adjunct therapy for patients with arthritis.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jingxian Feng ◽  
Doudou Huang ◽  
Yingbo Yang ◽  
Junfeng Chen ◽  
Shi Qiu ◽  
...  

AbstractIsatis indigotica Fort. (Chinese woad) is a species with an ancient and well-documented history as an indigo dye and medicinal plant. It is often confused with Isatis tinctoria L. (European woad), a medicinal plant in Europe. Here, the differences between I. indigotica and I. tinctoria are systematically described. The usage development history, clinical applications and pharmacological activities, and chemical components of I. indigotica are also summarized. Lignans, indole alkaloids, and their corresponding derivatives have been identified as the major active ingredients of I. indigotica and are associated with anti-viral, anti-inflammatory, anti-cancer, and other health-promoting activities. Notable progress has been made in understanding the biosynthetic pathway and regulation mechanism of lignans and indole alkaloids in I. indigotica, the results from which should facilitate the process of targeted metabolic engineering or synthetic biology. Moreover, multiple biotechnology methods such as polyploid breeding and genetic engineering have been used with I. indigotica to result in, for example, greater yields, higher levels of bioactive component accumulation, and enhanced stress tolerance to salt, drought, and insects. Some issues require additional analyses, and suggestions for future research on I. indigotica are also discussed.


2021 ◽  
Vol 17 (2) ◽  
pp. 057-062
Author(s):  
Mustafa Yaşar ◽  
Sibel Bayıl Oğuzkan ◽  
Halil İbrahim Uğraş

Since the beginning of the evaluation of plants in terms of human health, the bioactivity properties of plants have been studied in the laboratory and thus standards have been brought to the treatment methods with plants. For this purpose, some bioactive component analyzes of 18 herbal capsules and 2 liquid herbal syrups produced by Naturin Company were performed in our current study. In this context, the total oxidant and antioxidant status of these plant mixtures were evaluated. The free radical capacities of the samples were determined by 1, 1-diphenyl-2-picrylhydrazil (DPPH) method and their DNA protective activities were determined using pBR322 plasmid DNA. Total antioxidant level (TAL) and Total oxidant level (TOL) activities were performed using Rel Assay diagnostic kit. All 3 of the stinging nettle samples showed DNA protective activity. The clean sample containing milk thistle extract also showed DNA Protective activity. In both the syrup samples (My guard and DTX-19) results were detected in the direction of positive protection on DNA. When the DPPH radical scavenging capacity was examined, it was determined that the best results were in juniper, nettle and thistle thistle samples, and the samples with syrup had a very good radical scavenging effect, and all of the samples showed antioxidant activity. This study is a preliminary and supportive study in order to elucidate the properties that can be used as drug active ingredients in traditional medicine, especially in the field of pharmacology.


2021 ◽  
pp. 153537022110469
Author(s):  
Kumari Aditi ◽  
Akanksha Singh ◽  
Mallikarjun N Shakarad ◽  
Namita Agrawal

Huntington’s disease (HD) is a devastating polyglutamine disorder characterized by extensive neurodegeneration and metabolic abnormalities at systemic, cellular and intracellular levels. Metabolic alterations in HD manifest as abnormal body weight, dysregulated biomolecule levels, impaired adipocyte functions, and defective energy state which exacerbate disease progression and pose acute threat to the health of challenged individuals in form of insulin resistance, cardiovascular disease, and energy crisis. To colossally mitigate disease symptoms, we tested the efficacy of curcumin in Drosophila model of HD. Curcumin is the bioactive component of turmeric ( Curcuma longa Linn), well-known for its ability to modulate metabolic activities. We found that curcumin effectively managed abnormal body weight, dysregulated lipid content, and carbohydrate level in HD flies. In addition, curcumin administration lowered elevated reactive-oxygen-species levels in adult adipose tissue of diseased flies, and improved survival and locomotor function in HD flies at advanced disease stage. Altogether, these findings clearly suggest that curcumin efficiently attenuates metabolic derangements in HD flies and can prove beneficial in alleviating the complexities associated with HD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Silpita Paul ◽  
Dia Roy ◽  
Subhadip Pati ◽  
Gaurisankar Sa

The conventional carcinoma treatment generally encompasses the employment of radiotherapy, chemotherapy, surgery or use of cytotoxic drugs. However, recent advances in pharmacological research have divulged the importance of traditional treatments in cancer. The aim of the present review is to provide an overview of the importance of one such medicinal herb of Chinese and Indian origin: Andrographis paniculate on colorectal cancer with special emphasis on its principal bioactive component andrographolide (AGP) and its underlying mechanisms of action. AGP has long been known to possess medicinal properties. Studies led by numerous groups of researchers shed light on its molecular mechanism of action. AGP has been shown to act in a multi-faceted manner in context of colorectal cancer by targeting matrix metalloproteinase-9, Toll-like receptor or NFκB signaling pathways. In this review, we highlighted the recent studies that show that AGP can act as an effective immunomodulator by harnessing effective anti-tumor immune response. Recent studies strongly recommend further research on this compound and its analogues, especially under in-vivo condition to assess its actual potential as a prospective and efficient candidate against colorectal cancer. The current review deals with the roles of this phytomedicine in context of colorectal cancer and briefly describes its perspectives to emerge as an essential anti-cancer drug candidate. Finally, we also point out the drawbacks and difficulties in administration of AGP and indicate the use of nano-formulations of this phytomedicine for better therapeutic efficacy.


Sign in / Sign up

Export Citation Format

Share Document