Three-wave interaction in cold magnetized plasmas

1973 ◽  
Vol 21 (3) ◽  
pp. 391-397 ◽  
Author(s):  
L. Stenflo
2014 ◽  
Vol 80 (4) ◽  
pp. 643-652 ◽  
Author(s):  
Erik Wallin ◽  
Jens Zamanian ◽  
Gert Brodin

The theory for nonlinear three-wave interaction in magnetized plasmas is reconsidered using quantum hydrodynamics. The general coupling coefficients are calculated for the generalized Bohm de Broglie term. It is found that the Manley–Rowe relations are fulfilled only if the form of the particle dispersive term coincides with the standard expression. The implications of our results are discussed.


2018 ◽  
Vol 49 (2) ◽  
pp. 105-118
Author(s):  
Volf Ya. Borovoy ◽  
Vladimir Evguenyevich Mosharov ◽  
Vladimir Nikolaevich Radchenko ◽  
Arkadii Sergeyevich Skuratov

Author(s):  
V.A. Buts ◽  
◽  
D.V. Tarasov ◽  
Keyword(s):  

Particles ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 7 ◽  
Author(s):  
Ernazar Abdikamalov ◽  
César Huete ◽  
Ayan Nussupbekov ◽  
Shapagat Berdibek

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Minjun J. Choi ◽  
Lāszlo Bardōczi ◽  
Jae-Min Kwon ◽  
T. S. Hahm ◽  
Hyeon K. Park ◽  
...  

AbstractMagnetic islands (MIs), resulting from a magnetic field reconnection, are ubiquitous structures in magnetized plasmas. In tokamak plasmas, recent researches suggested that the interaction between an MI and ambient turbulence can be important for the nonlinear MI evolution, but a lack of detailed experimental observations and analyses has prevented further understanding. Here, we provide comprehensive observations such as turbulence spreading into an MI and turbulence enhancement at the reconnection site, elucidating intricate effects of plasma turbulence on the nonlinear MI evolution.


2021 ◽  
Vol 222 ◽  
pp. 108619
Author(s):  
Milad Zabihi ◽  
Said Mazaheri ◽  
Masoud Montazeri Namin ◽  
Ahmad Rezaee Mazyak

Sign in / Sign up

Export Citation Format

Share Document