Semiempirical equation of state and the Grüneisen parameter for polymers and rare gas solids

Polymer ◽  
1991 ◽  
Vol 32 (17) ◽  
pp. 3170-3176 ◽  
Author(s):  
S Saeki ◽  
M Tsubokawa ◽  
J Yamanaka ◽  
T Yamaguchi
2013 ◽  
Vol 114 (17) ◽  
pp. 173509 ◽  
Author(s):  
Jianzhong Zhang ◽  
Jinlong Zhu ◽  
Nenad Velisavljevic ◽  
Liping Wang ◽  
Yusheng Zhao

2008 ◽  
Vol 41 (5) ◽  
pp. 886-896 ◽  
Author(s):  
Ian G. Wood ◽  
Lidunka Vočadlo ◽  
David P. Dobson ◽  
G. David Price ◽  
A. D. Fortes ◽  
...  

The ability to perform neutron diffraction studies at simultaneous high pressures and high temperatures is a relatively recent development. The suitability of this technique for determiningP–V–Tequations of state has been investigated by measuring the lattice parameters of Mg1−xFexO (x= 0.2, 0.3, 0.4), in the rangeP < 10.3 GPa and 300 <T< 986 K, by time-of-flight neutron powder diffraction. Pressures were determined using metallic Fe as a marker and temperatures were measured by neutron absorption resonance radiography. Within the resolution of the experiment, no evidence was found for any change in the temperature derivative of the isothermal incompressibility, ∂KT/∂T, with composition. By assuming that the equation-of-state parameters either varied linearly or were invariant with composition, the 60 measured state points were fitted simultaneously to aP–V–T–xequation of state, leading to values of ∂KT/∂T= −0.024 (9) GPa K−1and of the isothermal Anderson–Grüneisen parameter δT= 4.0 (16) at 300 K. Two designs of simultaneous high-P/Tcell were employed during this study. It appears that, by virtue of its extended pressure range, a design using toroidal gaskets is more suitable for equation-of-state studies than is the system described by Le Godec, Dove, Francis, Kohn, Marshall, Pawley, Price, Redfern, Rhodes, Ross, Schofield, Schooneveld, Syfosse, Tucker & Welch [Mineral. Mag.(2001),65, 737–748].


Author(s):  
K. Sunil ◽  
D. Ashwini ◽  
Vijay S. Sharma

We have used a method for determining volume dependence of the Grüneisen parameter in the Lindemann law to study the pressure dependence of melting temperatures in case of 10 metals viz. Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn. The reciprocal gamma relationship has been used to estimate the values of Grüneisen parameters at different volumes. The results for melting temperatures of metals at high pressures obtained in this study using the Lindemann law of melting are compared with the available experimental data and also with the values calculated from the instability model based on a thermal equation of state. The analytical model used in this study is much simpler than the accurate DFT calculations and molecular dynamics.


2018 ◽  
Vol 32 (30) ◽  
pp. 1850339 ◽  
Author(s):  
K. Sunil ◽  
S. B. Sharma ◽  
B. S. Sharma

We have determined the melting slopes as a function of pressure for MgO up to a pressure of 135 GPa, and for LiF up to a pressure of 100 GPa using the Lindemann law. Values of melting temperature have also been calculated from the melting slopes using Euler’s finite difference calculus method. It is found that the melting slope decreases continuously with the increase in pressure giving a nonlinear pressure dependence of the melting temperature. Values of bulk modulus and the Grüneisen parameter appearing in the Lindemann law of melting have been determined using the Stacey reciprocal K-primed equation of state and the Shanker reciprocal gamma relationship. The results for melting temperatures of MgO and LiF at different pressures are compared with the available experimental data. Values of melting temperatures at different pressures determined from the Al’tshuler relationship for the volume dependence of the Grüneisen parameter have also been included in the comparison presented.


1979 ◽  
Vol 20 (6) ◽  
pp. 2362-2365 ◽  
Author(s):  
B. K. Godwal ◽  
S. K. Sikka ◽  
R. Chidambaram

1988 ◽  
Vol 146 (1) ◽  
pp. 125-130 ◽  
Author(s):  
M. Kumar ◽  
A. K. Pachauri ◽  
S. D. Chaturvedi ◽  
A. K. Sharma

Sign in / Sign up

Export Citation Format

Share Document