volume dependence
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 11)

H-INDEX

40
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jae Kap Jung ◽  
Kyu-Tae Kim ◽  
Un Bong Baek ◽  
Seung Hoon Nahm

Abstract We have investigated the volume effects on hydrogen diffusion properties in both sorption and desorption processes by employing a volumetric analysis technique. The total uptake (𝐶∞), total desorbed content (𝐶0), sorption diffusion coefficient (Ds), desorption diffusion coefficient (Dd), sorption and desorption equilibrium time of hydrogen in two rubbery polymers are determined relative to the diameter and thickness of the cylindrical sample in the two processes. 𝐶∞ and 𝐶0 do not demonstrate the appreciable volume dependence for all rubbers. The identical values in 𝐶∞ and 𝐶0 indicate the reversibility between sorption and desorption, which is interpreted by the occurrence of physisorption rather than chemisorption by introducing hydrogen molecules. The larger Dd values in the desorption process than Ds may be attributed to increased amorphous phase and volume swelling caused by increased hydrogen voids and polymer chain scission after decompression. The time to reach equilibrium in both sorption and desorption processes was found to be linearly proportional to the square of thickness above an aspect ratio of 3.7, which is consistent with the numerical simulations based on the solution of Fick’s law. This finding could be used to predict the equilibrium adsorption time depending on the sample size in the polymer.


Author(s):  
K. Sunil ◽  
D. Ashwini ◽  
Vijay S. Sharma

We have used a method for determining volume dependence of the Grüneisen parameter in the Lindemann law to study the pressure dependence of melting temperatures in case of 10 metals viz. Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn. The reciprocal gamma relationship has been used to estimate the values of Grüneisen parameters at different volumes. The results for melting temperatures of metals at high pressures obtained in this study using the Lindemann law of melting are compared with the available experimental data and also with the values calculated from the instability model based on a thermal equation of state. The analytical model used in this study is much simpler than the accurate DFT calculations and molecular dynamics.


2021 ◽  
Vol 11 (15) ◽  
pp. 6789
Author(s):  
Mohammed K. Al Mesfer

The current study deals with the maximization of NaOH conversion using step-wise regression analysis in a CSTR. The dependence of temperature, volume, agitation rate, and feed rate on reactor performance is examined as well as interaction outcome of the operating parameters. The concentration of the reactants was fixed at 0.1 M. The steady state conversion with respect to NaOH is analyzed to find the process performance. Step-wise regression analysis is used to remove an insignificant factors. The agitation rate (X2) and feed rate (X3) proved to have an insignificant influence on the reaction conversion at a significant level (α) of 5%. Consequently, the temperature (X1) and reaction volume (X4) were found to have significant effect on the reaction conversion using step-wise regression. The temperature and volume dependence on steady state NaOH conversion were described by a polynomial model of 2nd and 3rd order. A maximal steady state conversion equal to 63.15% was obtained. No improvement was found in reaction conversion with 3rd order polynomial, so the second order polynomial is considered as the optimum reaction conversion modal. It may be recommended that 2nd order regression polynomial model adequately represents the experimental data very well.


Author(s):  
Е. С. Онучин ◽  
◽  
В. А. Фельдштейн ◽  
Н. А. Товарнова ◽  
Л. Б. Васильченко ◽  
...  

Space orbital stations operations support consists an adoption of meaningful measures to protect space station against impacts of space debris and meteoroids. This goal can be reached by using multilayered protection shields that are made with the fabric material layers. Shields designing and modeling requires specific characteristics that define energy absorbed volume by the fabric destruction under impact. The paper describes the methodology and experimental determination method for absorbed energy volume results by using multilayer fabrics of orbital manned stations shielding constructions under distributed impulse loading caused by the space debris impacts. The energy absorbed volume by the multilayer fabrics is obtained from the experiments by analysis of specimen and flat metal projectile impact. Projectile was accelerated by the air gas gun. The obtained experimental determination results of energy absorbed volume in pressure range up to 1,5 GPa are given. Using the model of fabric as a porous material its energy absorption volume dependence in pressure range up to 10 GPa and compared with experimental data. It is shown that for materials with high porosity absorbed energy volume against pressure dependence is close to linear. Corresponding asymptotic dependence for materials with high porosity under the high pressure is obtained.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Eugenio Calandrini ◽  
Lorenzo Paulatto ◽  
Daniele Antonangeli ◽  
Fei He ◽  
Ricardo P. S. M. Lobo ◽  
...  

Nanoscale ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 300-310
Author(s):  
Lei Yang ◽  
Lanqiong Yang ◽  
Kun Ma ◽  
Yu Wang ◽  
Tong Song ◽  
...  

Atomic-scale free volume holes have significant effects on the dielectric constant and breakdown strength of polymer composite films.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950394
Author(s):  
Hiral Patel ◽  
Priyank Kumar ◽  
N. K. Bhatt ◽  
P. R. Vyas ◽  
V. B. Gohel

A comprehensive and systematic study of superconducting state parameters (SSPs) of Bi-based binary alloys of the form [Formula: see text] has been carried out in the framework of pseudopotential theory at different concentrations ([Formula: see text]) of impurity atom-[Formula: see text] in host atom Bi which varies from 0 to 1. Impurity atom [Formula: see text] has been replaced by In, Tl, Sb and Pb to form four alloy systems. The density-based local form of the pseudopotential proposed by Fiolhais et al. has been used in this study to compute SSPs such as electron–phonon coupling strength ([Formula: see text]), Coulomb pseudopotential ([Formula: see text]), transition temperature ([Formula: see text]), effective interaction strength ([Formula: see text] and isotopic effect parameter ([Formula: see text]) of Bi-based binary alloy systems. Computed results of SSPs of alloys under study are in good agreement with available experimental and other theoretical results. In order to investigate the effect of pressure on SSPs of alloys under study, a theoretical calculation of SSPs as a function of compressed volume is reported. The volume dependence of Debye temperature has been accounted by using Debye–Gruneisen model which involves the Gruneisen parameter. Thus, to describe the effect of pressure on SSPs accurately, the value of Gruneisen parameter should be as accurate as possible. But reported results of Gruneisen parameter in the literature are highly scattered. Due to this reason, we have used two sets of Gruneisen parameter obtained by different methods to understand its role in the computation of SSPs as a function of compressed volume. Further, critical volumes for all alloys at different concentration have been predicted at which electron–phonon coupling strength and Coulomb pseudopotential are equal ([Formula: see text]). At critical volume, superconductivity quenches where transition temperature, [Formula: see text], and effective interaction strength, [Formula: see text], become zero. It is observed that critical volumes predicted by all approaches used in this study are in excellent agreement with each other.


2019 ◽  
Vol 7 ◽  
Author(s):  
Mária Bohdalová ◽  
Michal Greguš

Nowadays Bitcoin as cryptocurrency takes a significant place on the global financial markets. This paper analyzes the Bitcoin closing prices and traded volume during the period from December 28, 2013 to January 22, 2019. This period is known as a period with rapid increasing of the Bitcoin closing prices, mainly in the second half of the year 2017. The aim of this paper is twofold. First, we compute the Hurst coefficient to discover the close price dynamics and traded volume using a fractal point of view. We have discovered an anti-persistent behavior in the traded volume and random character of bitcoin closing prices. Second, we propose an analysis of the relationship between the close prices and traded volume. Our findings show how changes in the high-price period differ from changes in the low-price period. We also found that high prices caused investors to be afraid to trade due to possible rapid decrease in bitcoin closing prices.


Sign in / Sign up

Export Citation Format

Share Document