Evidence for a Postglacial Low Relative Sea-Level Stand in the Drowned Delta of the Merrimack River, Western Gulf of Maine

1983 ◽  
Vol 19 (3) ◽  
pp. 325-336 ◽  
Author(s):  
R. N. Oldale ◽  
L. E. Wommack ◽  
A. B. Whitney

AbstractA submerged delta of the Merrimack River, located offshore between Cape Ann, Massachusetts, and the New Hampshire border, indicates a postglacial low relative see-level stand of about −47 m. The low stand is inferred to date to 10,500 yr B.P., but a lack of age control makes this assignment uncertain. A curve based on a late Wisconsinan, high relative sea-level stand of +32m at 13,000 yr B.P., a low stand of −47m at 10,500 yr B.P., and younger radiocarbon dates related to sea-level rise indicates an early postglacial crustal rise of at least 5 m per century.

1985 ◽  
Vol 22 (7) ◽  
pp. 1039-1047 ◽  
Author(s):  
I. A. Brookes ◽  
D. B. Scott ◽  
J. H. McAndrews

We first report pollen and foraminifera analyses and radiocarbon dates from two cores taken from salt-marsh deposits bordering Port au Port Bay, southwestern Newfoundland. Results show that relative sea level (RSL) stood at 2.8 m below present higher high-water level (HHWL) at 2770 ± 300 years BP and at −1.8 m at 2365 ± 175 years BP at the core sites. They permit calculation of a rate of late Holocene RSL change from western Newfoundland. We then report other available dates bearing on the earlier RSL record of this area.A date of 5800 ± 200 years BP fixes the age of minimum RSL in Port au Port Bay at 11–14 m below present. A date of 9350 ± 120 years BP from St. George's provides a minimum age for the passage of sea level below present there. A date of 12 600 ± 140 years BP from Stephenville fixes a sea level at 29 m above present, whereas one of 13 600 ± 110 years BP from Abrahams Cove dates the marine limit at 44 m. These geographically restricted data closely constrain a curve of postglacial RSL change in the Port au Port Bay – northern St. George's Bay area. The form of the curve supports a recent model predicting sea-level response to wastage of a limited late Wisconsinan ice load in the wider region.


1993 ◽  
Vol 40 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Robert N. Oldale ◽  
Steven M. Colman ◽  
Glen A. Jones

AbstractNew radiocarbon dates provide ages for two submerged strandline features on the Massachusetts inner shelf. These ages provide limited control on a relative sea-level (RSL) curve for the late Wisconsinan and Holocene. The curve indicates a late Wisconsinan high stand of RSL of +33 m about 14,000 yr ago and a very short-lived relative low stand of about -43 m at about 12,000 yr ago followed by a rise to present sea level. Rapid changes of RSL around 12,000 yr ago may be related to changes in global glacial meltwater discharge and eustatic sea-level change shown by dated corals off Barbados. Variations in the magnitude and timing of RSL change from south to north along the coast of the western Gulf of Maine are due to greater crustal depression and later deglaciation to the north.


1987 ◽  
Vol 24 (4) ◽  
pp. 591-601 ◽  
Author(s):  
Arthur S. Dyke

Seven new radiocarbon dates pertaining to deglaciation of northern Prince of Wales Island place the margin of the Laurentide Ice Sheet on the island by 11 000 BP. This requires a revision of the proposed age for the Viscount Melville Sound Ice Shelf of 10 300 – 9880 BP. A revised age of 11 300 – 11 000 BP is suggested.The new dates also require revisions of the proposed Wisconsinan and Holocene history of Banks Island. Shells thought to have been thrust onshore to an elevation of 88 m by the ice shelf on northern Banks Island after 10 600 BP are reinterpreted as undisturbed postglacial marine shells recording a relative sea level of 88 m or more. This, in turn, suggests that the East Coast Sea and Jesse Till are of Late Wisconsinan rather than Early Wisconsinan age and that the Late Wisconsinan glacial limit on Banks Island as figured on the 1968 Glacial Map of Canada, rather than on recent revisions, is essentially correct.


1996 ◽  
Vol 33 (7) ◽  
pp. 1053-1074 ◽  
Author(s):  
Philip R Hill

The Late Wisconsinan and Holocene sequence stratigraphy of the Mackenzie Delta provides insights into the glacial history of the region. The base of the described succession is a hummocky regional reflector interpreted to be a flooding surface formed immediately after retreat of glacial ice from the Mackenzie Trough. Above this flooding surface, two progradational parasequences are present. The first, assigned to the transgressive systems tract, is correlated with the Tutsieta Lake readvance of the ice sheet at approximately 13 000 BP. A flooding surface forming the upper boundary of this parasequence extends inland to at least Inuvik, developing as a response to glacial retreat and early Holocene relative sea level rise. The second parasequence of Holocene deltaic deposits is assigned to the highstand systems tract and is characterized by progressive progradation of the delta into the Mackenzie Trough to a position seaward of the present delta coastline. A distinct reduction in gradient of the most recent delta clinoforms is consistent with other data suggesting regional transgression and is interpreted to represent the development of a healing-phase wedge. The reasons for this recent transgression are not clear, because relative sea level rise has decreased and sediment supply probably increased over the last 2000 years. Transgression may be related to decreased efficiency of channels, increased trapping of sediments by thermokarst lakes, overspill of the delta across the eastern margin of the valley, and (or) progressively greater exposure to wave action as the delta became less sheltered by the confines of the glacial valley.


2020 ◽  
Vol 644 ◽  
pp. 33-45
Author(s):  
JM Hill ◽  
PS Petraitis ◽  
KL Heck

Salt marshes face chronic anthropogenic impacts such as relative sea level rise and eutrophication, as well as acute disturbances from tropical storms that can affect the productivity of these important communities. However, it is not well understood how marshes already subjected to eutrophication and sea level rise will respond to added effects of episodic storms such as hurricanes. We examined the interactive effects of nutrient addition, sea level rise, and a hurricane on the growth, biomass accumulation, and resilience of the saltmarsh cordgrass Spartina alterniflora in the Gulf of Mexico. In a microtidal marsh, we manipulated nutrient levels and submergence using marsh organs in which cordgrasses were planted at differing intertidal elevations and measured the impacts of Hurricane Isaac, which occurred during the experiment. Prior to the hurricane, grasses at intermediate and high elevations increased in abundance. After the hurricane, all treatments lost approximately 50% of their shoots, demonstrating that added nutrients and elevation did not provide resistance to hurricane disturbance. At the end of the experiment, only the highest elevations had been resilient to the hurricane, with increased above- and belowground growth. Added nutrients provided a modest increase in above- and belowground growth, but only at the highest elevations, suggesting that only elevation will enhance resilience to hurricane disturbance. These results empirically demonstrate that S. alterniflora in microtidal locations already subjected to submergence stress is less able to recover from storm disturbance and suggests we may be underestimating the loss of northern Gulf Coast marshes due to relative sea level rise.


Terra Nova ◽  
1992 ◽  
Vol 4 (3) ◽  
pp. 293-304 ◽  
Author(s):  
J.C. Varekamp ◽  
E. Thomas ◽  
O. Plassche

2021 ◽  
Author(s):  
Frances E. Dunn ◽  
Philip S. J. Minderhoud

<p>As one of the largest deltas in the world, the Mekong delta is home to over 17 million people and supports internationally important agriculture. Recently deposited sediment compacts and causes subsidence in deltas, so they require regular sediment input to maintain elevation relative to sea level. These processes are complicated by human activities, which prevent sediment deposition indirectly through reducing fluvial sediment supply and directly through the construction of flood defence infrastructure on deltas, impeding floods which deliver sediment to the land. Additionally, anthropogenic activities increase the rate of subsidence through the extraction of groundwater and other land-use practices.</p><p>This research shows the potential for fluvial sediment delivery to compensate for sea-level rise and subsidence in the Mekong delta over the 21st century. We use detailed elevation data and subsidence scenarios in combination with regional sea-level rise and fluvial sediment flux projections to quantify the potential for maintaining elevation relative to sea level in the Mekong delta. We present four examples of localised sedimentation scenarios in specific areas, for which we quantified the potential effectiveness of fluvial sediment deposition for offsetting relative sea-level rise. The presented sediment-based adaptation strategies are complicated by existing land use, therefore a change in water and sediment management is required to effectively use natural resources and employ these adaptation methods. The presented approach could be an exemplar to assess sedimentation strategy feasibility in other delta systems worldwide that are under threat from sea-level rise.</p>


Sign in / Sign up

Export Citation Format

Share Document