Estimation of S phase duration in goat epidermis by an in vivo intradermal double labelling technique using bromodeoxyuridine and tritiated thymidine

1992 ◽  
Vol 52 (1) ◽  
pp. 5-9 ◽  
Author(s):  
F.C. Casas ◽  
A.R. Jefferies
1989 ◽  
Vol 37 (9) ◽  
pp. 1449-1454 ◽  
Author(s):  
J S Meyer ◽  
J Nauert ◽  
S Koehm ◽  
J Hughes

We labeled active S-phase cells in primary breast carcinomas with a modified 5-bromo-2'-deoxyuridine (BrdU) procedure using a silver-enhanced colloidal gold visualization step. Separate samples of 29 tumors were labeled with BrdU or tritiated thymidine ([3H]-dThd), and the labeling indices (LI) from the two methods were equivalent (Spearman's correlation coefficient = 0.96). Three breast carcinomas were incubated in various mixes of both BrdU and [3H]-dThd and developed sequentially for each. Paired photomicrographs showed that the same nuclei were labeled by either precursor. The in vitro method yielded LIs similar to those reported after in vivo pulse BrdU labeling for tumors of the central nervous system. The BrdU LI correlated significantly (r = 0.76, p less than 0.001) with % S-phase by DNA flow cytometry in 33 breast carcinomas. The BrdU labeling method is simpler and more rapid than the [3H]-dThd procedure (1-2 days for completion for the former, 7-10 days for the latter), and it provides an equivalent measurement of proliferative index.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1647-1653 ◽  
Author(s):  
A Raza ◽  
Y Maheshwari ◽  
HD Preisler

The proliferative characteristics of myeloid leukemias were defined in vivo after intravenous infusions of bromodeoxyuridine (BrdU) in 40 patients. The percentage of S-phase cells obtained from the biopsies (mean, 20%) were significantly higher (P = .00003) than those determined from the bone marrow (BM) aspirates (mean, 9%). The post- BrdU infusion BM aspirates from 40 patients were incubated with tritiated thymidine in vitro. These double-labeled slides were utilized to determine the duration of S-phase (Ts) in myeloblasts and their total cell cycle time (Tc). The Ts varied from four to 49 hours (mean, 19 hours; median, 17 hours). Similarly, there were wide variations in Tc of individual patients ranging from 16 to 292 hours (mean, 93 hours; median, 76 hours). There was no relationship between Tc and the percentage of S-phase cells, but there was a good correlation between Tc and Ts (r = .8). Patients with relapsed acute nonlymphocytic leukemia (ANLL) appeared to have a longer Ts and Tc than those studied at initial diagnosis. A subgroup of patients at either extreme of Tc were identified who demonstrated clinically documented resistance in response to multiple courses of chemotherapy. We conclude that Ts and Tc provide additional biologic information that may be valuable in understanding the variations observed in the natural history of ANLL.


Blood ◽  
1973 ◽  
Vol 41 (6) ◽  
pp. 789-796 ◽  
Author(s):  
F. Vassort ◽  
M. Winterholer ◽  
E. Frindel ◽  
M. Tubiana

Abstract The kinetics of colony-forming units (CFU) of the bone marrow in mice were studied using a method involving the suicide of cells in vivo by 3H-TdR or hydroxyurea. After selectively killing cells in S phase, the surviving cells traversed S phase in a cyclic fashion. This enabled the duration of the cycle and of the S phase of CFU to be measured—8 hr and 4 hr, respectively. It was shown that quiescent stem cells pass into the proliferative compartment. A computer model helped to explain the experimental results. The feedback mechanism seemed to be initiated by the depletion of the compartment of maturing cells. This hypothesis is supported by the fact that the CFU response to S-phase cell killing was similar in two strains of mice and was independent of the proportion of CFU in S phase, which was approximately 0% in the C57BI and 20% in the C3H mice.


1969 ◽  
Vol 45 (3) ◽  
pp. 441-447 ◽  
Author(s):  
F. LEROY ◽  
P. GALAND ◽  
J. CHRÉTIEN

SUMMARY Mitotic parameters (S phase duration and generation time) have been studied in the vaginal and the endo-uterine epithelium, at different stages of the oestrous cycle in the rat. The double labelling technique with [3H]thymidine was employed. Both in the vaginal basal epithelial layer and in the endometrial epithelium the cellular proliferation rate was maximal during dioestrus, whereas the longest generation times were observed at oestrus. This finding is in accordance with the recently proposed pattern of oestrogen secretion in this species. Maximal growth rate in the vagina was delayed as compared with the uterine epithelium.


1967 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
F. S. Philips ◽  
H. S. Schwartz ◽  
S. S. Sternberg

SummaryThe cytotoxic effects of hydroxyurea and of related hydroxamic acid derivatives in vivo are briefly described. They occur selectively in tissues with high rates of cell renewal and they are of brief duration. Tissue concentration of hydroxyurea diminish rapidly as the result of renal excretion and metabolism; there is a close temporal relation between the physiological disposition of the agents and the cytotoxic changes. Hydroxyurea induces an immediate inhibition of DNA synthesis in proliferating tisdsues such as thymus, small intestine, and regenerating liver. Autoradiographic studies of mouse duodenum using tritiated thymidine have shown that the lethal susceptibility to hydroxyurea is restricted to cells in the S-phase of the mitotic cycles. Cells in G1, G2, and M are not damaged by the agent.


1991 ◽  
Vol 39 (4) ◽  
pp. 407-412 ◽  
Author(s):  
M A Miller ◽  
C M Mazewski ◽  
N Yousuf ◽  
Y Sheikh ◽  
L M White ◽  
...  

Cell cycle kinetics of solid tumors in the past have been restricted to an in vitro labeling index (LI) measurement. Two thymidine analogues, bromodeoxyuridine (BrdU) and iododeoxyuridine (IUdR), can be used to label S-phase cells in vivo because they can be detected in situ by use of monoclonal antibodies (MAb) against BrdU (Br-3) or IUdR (3D9). Patients with a variety of solid tumors (lymphoma, brain, colon cancers) received sequential intravenous IUdR and BrdU. Tumor tissue removed at the end of infusion was embedded in plastic and treated with MAb Br-3 and 3D9 sequentially, using a modification of a previously described method. Clearly single and double labeled cells were visible, which enabled us to determine the duration of S-phase (Ts) and the total cell cycle time (Tc), in addition to the LI in these tumors. Detailed control experiments using tissue culture cell lines as well as bone marrow cells from leukemic patients are described, including the comparison of this double label technique with our previously described BrdU-tritiated thymidine technique. We conclude that the two methods are comparable and that the IUdR/BrdU method permits rapid and reliable cell cycle measurements in solid tumors.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1647-1653 ◽  
Author(s):  
A Raza ◽  
Y Maheshwari ◽  
HD Preisler

Abstract The proliferative characteristics of myeloid leukemias were defined in vivo after intravenous infusions of bromodeoxyuridine (BrdU) in 40 patients. The percentage of S-phase cells obtained from the biopsies (mean, 20%) were significantly higher (P = .00003) than those determined from the bone marrow (BM) aspirates (mean, 9%). The post- BrdU infusion BM aspirates from 40 patients were incubated with tritiated thymidine in vitro. These double-labeled slides were utilized to determine the duration of S-phase (Ts) in myeloblasts and their total cell cycle time (Tc). The Ts varied from four to 49 hours (mean, 19 hours; median, 17 hours). Similarly, there were wide variations in Tc of individual patients ranging from 16 to 292 hours (mean, 93 hours; median, 76 hours). There was no relationship between Tc and the percentage of S-phase cells, but there was a good correlation between Tc and Ts (r = .8). Patients with relapsed acute nonlymphocytic leukemia (ANLL) appeared to have a longer Ts and Tc than those studied at initial diagnosis. A subgroup of patients at either extreme of Tc were identified who demonstrated clinically documented resistance in response to multiple courses of chemotherapy. We conclude that Ts and Tc provide additional biologic information that may be valuable in understanding the variations observed in the natural history of ANLL.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 450-450
Author(s):  
Merav Socolovsky ◽  
Yung Hwang ◽  
Daniel Hidalgo ◽  
Ramona Pop

Abstract We characterized a rapid commitment switch in mouse fetal liver cells in vivo, that activates the GATA-1 –dependent erythroid transcriptional program as well as other key erythroid differentiation milestones including the reconfiguration of chromatin at erythroid gene loci, and the onset of erythropoietin dependence (1,2). Our published work shows that this switch takes place in early S phase of the last CFU-e generation, as cells transition from flow cytometric Subset 0 (S0, Lin-CD71medium) to Subset 1 (S1, Lin-CD71high). This S0/S1 commitment switch requires S phase progression, and unexpectedly, is associated with a 50% increase in the rate at which S phase cells synthesize DNA (1,2). This latter observation suggests that the duration of S phase is altered during the commitment switch, becoming shorter and faster in S phase cells in S1, compared with S phase cells in S0. We also found that the accelerated DNA synthesis in S phase cells in S1 is essential for an unusual process of genome-wide DNA demethylation, which is rate- limiting for erythroid gene transcription (2). While it is well documented that growth factors may promote shorter cell cycles, this has been considered to be largely the result of their ability to promote the transition from G1 to S phase, resulting in a shorter G1 phase. By contrast, relatively little is known of how S phase duration is modulated during cell fate decisions and differentiation. Here we determined directly the lengths of S phase in CFUe cells and during subsequent erythroid differentiation in the fetal liver in vivo; and identified the cyclin-dependent kinase (CDK) inhibitor, p57KIP2, as a key regulator of S phase duration at the S0/S1 commitment switch. To measure S phase duration, we injected pregnant female mice sequentially with two nucleotide analogs: first, with BrdU, and 2 hours later, with EdU. Fetal livers were harvested shortly following the second injection. Cells that were in S phase during the time of the first injection, but have left S phase by the time of the second injection, were measured as the BrdU+EdU- fraction. This approach allowed us to determine that S phase duration in S0 cells is 7.5 hours, transiently falling to under 4 hours in S1 cells, before resuming a slower pace in more differentiated, Ter119high erythroblasts. We identified the cyclin-dependent kinase (CDK) inhibitor, p57KIP2, as a novel negative regulator S phase DNA synthesis rate. p57KIP2 is expressed in S phase cells in S0, prior to the commitment switch, and is rapidly downregulated (>30 fold) during the switch (1). Here we found that its exogenous over-expression in S0 cells prevented S phase from becoming shorter and faster in S1. We therefore proceeded to investigate p57KIP2-null mice, found to die perinatally with a range of developmental abnormalities; their erythropoietic system was not investigated (3,4). We found that mouse embryos deficient for p57KIP2 are variably pale and/or anemic. Their fetal liver S0 cells showed premature shortening of S phase prior to the commitment switch, as deduced from an elevated DNA synthesis rate in S phase cells of p57KIP2+/- or p57KIP2-/- S0 cells (reaching 83% of the DNA synthesis rate in S1 cells in the same fetal livers; p<0.007; n=12 p57KIP2-/- embryos and 18 p57KIP2+/- embryos), compared with the intra-S phase DNA synthesis rate of S0 cells in wild-type littermates (where DNA synthesis reaches only 64% of the DNA synthesis rate in S1 cells, n=28; see Figure). The premature shortening of S phase in S0 of p57-deficient embryos was associated with increased cell death, as measured by Annexin V, and with reduced differentiation. The latter was deduced from the significantly increased frequencies of earlier erythroid progenitors in the S0 subset (increased by 27% in p57KIP2+/- embryos, p<0.0008; and by 34% in p57KIP2-/- embryos, p<0.025) and a corresponding decrease in later, Ter119+ cells. We conclude that the efficient activation of the erythroid differentiation program at the S0/S1 commitment switch requires transient shortening of S phase. S phase becomes shorter and faster, most likely as a result of increased S phase CDK activation, when p57KIP2 expression is rapidly down-regulated at the S0/S1 transition. References: 1. Pop, R. et al., PLoS Biol, 2010. 8(9) 2. Shearstone, J.R., et al., Science, 2011. 334:799 3. Yan, Y., et al., G&D 1997. 11:973 4. Zhang, P., et al., Nature 1997. 387:151 Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document