tissue culture cell
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 6)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Christine A. Mikhael ◽  
Farid F. Zaki ◽  
Fayez A. Salib

In this study, skin lesions from buffaloes showing clinical signs of buffalopox infection were tested to isolate and identify the buffalopox virus (BPXV). Clinical examination of infected buffaloes was performed and visible clinical signs recorded. Skin scabs from infected buffaloes were collected and used for virus isolation on embryonated chicken egg (ECE) and tissue culture cell lines. The isolated BPXV was identified and characterized using polymerase chain reaction (PCR). The infected buffaloes displayed fever, skin eruptions, enlargement of superficial lymph nodes, emaciation and drop in milk yield. The ECE inoculated with the prepared skin scab samples showed clear raised white pock lesions on the chorioallantoic membrane (CAM). The inoculated tissue cultures (VERO and BHK cell lines) revealed a cytopathic effect (CPE) including rounding, clumping with cytoplasmic granulation and cluster formation. PCR for the C18L specific BPXV gene was carried out on the virus infected tissue culture produced 368 bp bands. Human infection with BPXV was also recorded. It was concluded that BPXV is circulating in Egyptian buffaloes, causing economical losses and infection in contact humans.


2021 ◽  
Vol 22 (10) ◽  
pp. 5183
Author(s):  
Lissette Retana Moreira ◽  
Alexa Prescilla-Ledezma ◽  
Alberto Cornet-Gomez ◽  
Fátima Linares ◽  
Ana Belén Jódar-Reyes ◽  
...  

Extracellular vesicles (EVs) are small lipid vesicles released by either any prokaryotic or eukaryotic cell, or both, with a biological role in cell-to-cell communication. In this work, we characterize the proteomes and nanomechanical properties of EVs released by tissue-culture cell-derived trypomastigotes (mammalian infective stage; (TCT)) and epimastigotes (insect stage; (E)) of Trypanosoma cruzi, the etiologic agent of Chagas disease. EVs of each stage were isolated by differential centrifugation and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), electron microscopy and atomic force microscopy (AFM). Measurements of zeta-potential were also included. Results show marked differences in the surface molecular cargos of EVs between both stages, with a noteworthy expansion of all groups of trans-sialidase proteins in trypomastigote’s EVs. In contrast, chromosomal locations of trans-sialidases of EVs of epimastigotes were dramatically reduced and restricted to subtelomeric regions, indicating a possible regulatable expression of these proteins between both stages of the parasite. Regarding mechanical properties, EVs of trypomastigotes showed higher adhesion compared to the EVs of epimastigotes. These findings demonstrate the remarkable surface remodeling throughout the life cycle of T. cruzi, which shapes the physicochemical composition of the extracellular vesicles and could have an impact in the ability of these vesicles to participate in cell communication in completely different niches of infection.


2021 ◽  
Vol 15 (4) ◽  
pp. e0009339
Author(s):  
Tanaporn Wangsanut ◽  
Katelynn R. Brann ◽  
Haley E. Adcox ◽  
Jason A. Carlyon

Background Scrub typhus is a neglected tropical disease that threatens more than one billion people. If antibiotic therapy is delayed, often due to mis- or late diagnosis, the case fatality rate can increase considerably. Scrub typhus is caused by the obligate intracellular bacterium, Orientia tsutsugamushi, which invades phagocytes and endothelial cells in vivo and diverse tissue culture cell types in vitro. The ability of O. tsutsugamushi to replicate in the cytoplasm indicates that it has evolved to counter eukaryotic host cell immune defense mechanisms. The transcription factor, NF-κB, is a tightly regulated initiator of proinflammatory and antimicrobial responses. Typically, the inhibitory proteins p105 and IκBα sequester the NF-κB p50:p65 heterodimer in the cytoplasm. Canonical activation of NF-κB via TNFα involves IKKβ-mediated serine phosphorylation of IκBα and p105, which leads to their degradation and enables NF-κB nuclear translocation. A portion of p105 is also processed into p50. O. tsutsugamushi impairs NF-κB translocation into the nucleus, but how it does so is incompletely defined. Principal findings Western blot, densitometry, and quantitative RT-PCR analyses of O. tsutsugamushi infected host cells were used to determine if the pathogen’s ability to inhibit NF-κB is linked to modulation of p105. Results demonstrate that p105 levels are elevated several-fold in O. tsutsugamushi infected HeLa and RF/6A cells with only a nominal increase in p50. The O. tsutsugamushi-stimulated increase in p105 is bacterial dose- and protein synthesis-dependent, but does not occur at the level of host cell transcription. While TNFα-induced phosphorylation of p105 serine 932 proceeds unhindered in infected cells, p105 levels remain elevated and NF-κB p65 is retained in the cytoplasm. Conclusions O. tsutsugamushi specifically stabilizes p105 to inhibit the canonical NF-κB pathway, which advances understanding of how it counters host immunity to establish infection.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 538 ◽  
Author(s):  
Saikat Gantait ◽  
Monisha Mitra ◽  
Jen-Tsung Chen

Ginsenosides are secondary metabolites that belong to the triterpenoid or saponin group. These occupy a unique place in the pharmaceutical sector, associated with the manufacturing of medicines and dietary supplements. These valuable secondary metabolites are predominantly used for the treatment of nervous and cardiac ailments. The conventional approaches for ginsenoside extraction are time-consuming and not feasible, and thus it has paved the way for the development of various biotechnological approaches, which would ameliorate the production and extraction process. This review delineates the biotechnological tools, such as conventional tissue culture, cell suspension culture, protoplast culture, polyploidy, in vitro mutagenesis, hairy root culture, that have been largely implemented for the enhanced production of ginsenosides. The use of bioreactors to scale up ginsenoside yield is also presented. The main aim of this review is to address the unexplored aspects and limitations of these biotechnological tools, so that a platform for the utilization of novel approaches can be established to further increase the production of ginsenosides in the near future.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 150 ◽  
Author(s):  
Clemens Röhrl ◽  
Flora Stübl ◽  
Martin Maier ◽  
Bettina Schwarzinger ◽  
Clemens Schwarzinger ◽  
...  

The transport of hydrophobic compounds to recipient cells is a critical step in nutrient supplementation. Here, we tested the effect of phospholipid-based emulsification on the uptake of hydrophobic compounds into various tissue culture cell lines. In particular, the uptake of ω-3 fatty acids from micellar or nonmicellar algae oil into cell models for enterocytes, epithelial cells, and adipocytes was tested. Micellization of algae oil did not result in adverse effects on cell viability in the target cells. In general, both micellar and nonmicellar oil increased intracellular docosahexaenoic acid (DHA) levels. However, micellar oil was more effective in terms of augmenting the intracellular levels of total polyunsaturated fatty acids (PUFAs) than nonmicellar oil. These effects were rather conserved throughout the cells tested, indicating that fatty acids from micellar oils are enriched by mechanisms independent of lipases or lipid transporters. Importantly, the positive effect of emulsification was not restricted to the uptake of fatty acids. Instead, the uptake of phytosterols from phytogenic oils into target cells also increased after micellization. Taken together, phospholipid-based emulsification is a straightforward, effective, and safe approach to delivering hydrophobic nutrients, such as fatty acids or phytosterols, to a variety of cell types in vitro. It is proposed that this method of emulsification is suitable for the effective supplementation of numerous hydrophobic nutrients.


2017 ◽  
Vol 163 ◽  
pp. 28-36
Author(s):  
Jeffrey D. Brown ◽  
Heather E. Dillon ◽  
Dorcas V. Kaweesa ◽  
Arden M. Harada

2016 ◽  
Vol 7 ◽  
Author(s):  
Crystal N. Propst ◽  
Stephanie L. Pylypko ◽  
Ryan J. Blower ◽  
Saira Ahmad ◽  
Mohammad Mansoor ◽  
...  

The Analyst ◽  
2016 ◽  
Vol 141 (2) ◽  
pp. 525-535 ◽  
Author(s):  
Dimitri Pappas

Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function.


Sign in / Sign up

Export Citation Format

Share Document