Inspiratory muscle activity during pulmonary edema in anesthetized dogs

1992 ◽  
Vol 89 (3) ◽  
pp. 287-298
Author(s):  
Arie Oliven ◽  
Steven G. Kelsen
1992 ◽  
Vol 73 (5) ◽  
pp. 2062-2068 ◽  
Author(s):  
A. Oliven ◽  
M. Haxhiu ◽  
S. G. Kelsen

The present study evaluated the reflex response of the expiratory muscles to pulmonary congestion and edema. The electromyograms of two thoracic and four abdominal expiratory muscles were recorded in 12 anesthetized dogs. Pulmonary edema was induced by rapid saline infusion in six dogs and injection of oleic acid into the pulmonary circulation in the remaining six dogs. Both forms of pulmonary edema reduced pulmonary compliance, interfered with gas exchange, and induced a rapid and shallow breathing pattern. The electrical activity of all abdominal muscles was suppressed during both forms of pulmonary edema. In contrast, the electromyogram activity of the thoracic expiratory muscles was not significantly affected by pulmonary edema. Acute pulmonary arterial hypertension produced in two dogs by inflating a balloon in the left atrium had no effect on ventilation or expiratory muscle electrical activity. In two vagotomized dogs, pulmonary edema did not inhibit the expiratory muscles. We conclude that pulmonary edema suppresses abdominal but not thoracic expiratory muscle activity by vagal reflex pathway(s). Extravasation of fluid into the lung appears to be more important than an increase in pulmonary vascular pressure in eliciting this response.


1975 ◽  
Vol 39 (2) ◽  
pp. 235-241 ◽  
Author(s):  
R. Lemen ◽  
J. G. Jones ◽  
P. D. Graf ◽  
G. Cowan

“Closing volume” (CV) was measured by the single-breath oxygen (SBO2) test in six dogs (alloxan group) before and after alloxan 100–200 mg/kg iv) was injected. CV increased significantly (P less than 0.05) from 32 +/- 3.2% (base line) to 45 +/- 3.5 % in period 1 (0–30 min after alloxan), but vital capacity (VC), respiratory system pressure volume (PV) curves, and alveolar plateau slopes did not change. No radiologic evidence of pulmonary edema was demonstrated in two dogs studied in period 1. CV decreased to 20 +/- 3.9% during period 2 (30–80 min after alloxan) and was associated with tracheal frothing, decreased VC, changes in the PV curve, and alveolar plateau slope, as well as histologic evidence of severe pulmonary edema. CV was 29 +/- 3.0%, and there were no changes in VC, PV curves, or alveolar plateau slopes in 6 other dogs studied for 2 h (control group). CV increased during period 1 before pulmonary edema could be demonstrated by changes in VC, PV curves, or radiography, but in period 2 lung function was so altered that CV by the SBO2 technique gave no useful information.


1959 ◽  
Vol 14 (2) ◽  
pp. 177-186 ◽  
Author(s):  
C. D. Cook ◽  
J. Mead ◽  
G. L. Schreiner ◽  
N. R. Frank ◽  
J. M. Craig

In order to study the mechanisms underlying the changes in the mechanical properties of the lungs during pulmonary edema, pulmonary vascular congestion was produced in spontaneously breathing, anesthetized dogs by partial aortic obstruction and intravenous infusion. Brief periods of congestion were associated with small changes in the lung compliance compared with the progressive and striking compliance reduction (-78%) noted with more prolonged congestion. Lung volume at end-expiration showed little change if edema fluid and trapped gas as well as the ventilated gas volume were taken into account. When edematous lungs were forcibly inflated beyond the tidal range, it was found that the overall compliance at a distending pressure of 30 cm H2O was not much less (-6%) than that of normal lungs. Furthermore, edematous lungs manifested marked ‘static’ hysteresis during such maneuvers. These findings suggested that surface phenomena were responsible for the mechanical behavior of edematous lungs rather than vascular congestion, per se, or intrinsic tissue changes. This was borne out by experiments on excised lungs which showed that the elastic properties of edematous lungs were not significantly different from normal lungs when surface forces were minimized. Submitted on August 25, 1958


2015 ◽  
Vol 29 (12) ◽  
pp. 3517-3522 ◽  
Author(s):  
Nathan J. Hellyer ◽  
Ian A. Folsom ◽  
Dan V. Gaz ◽  
Alynn C. Kakuk ◽  
Jessica L. Mack ◽  
...  

2001 ◽  
Vol 90 (3) ◽  
pp. 857-864 ◽  
Author(s):  
J. Yu ◽  
Y. Wang ◽  
G. Soukhova ◽  
L. C. Collins ◽  
J. C. Falcone

Recently, a vagally mediated excitatory lung reflex (ELR) causing neural hyperpnea and tachypnea was identified. Because ventilation is regulated through both inspiratory and expiratory processes, we investigated the effects of the ELR on these two processes simultaneously. In anesthetized, open-chest, and artificially ventilated rabbits, we recorded phrenic nerve activity and abdominal muscle activity to assess the breathing pattern when the ELR was evoked by directly injecting hypertonic saline (8.1%, 0.1 ml) into lung parenchyma. Activation of the ELR stimulated inspiratory activity, which was exhibited by increasing amplitude, burst rate, and duty cycle of the phrenic activity (by 22 ± 4, 33 ± 9, and 57 ± 11%, respectively; n = 13; P < 0.001), but suppressed expiratory muscle activity. The expiratory muscle became silent in most cases. On average, the amplitude of expiratory muscle activity decreased by 88 ± 5% ( P < 0.002). The suppression reached the peak at 6.9 ± 1 s and lasted for 200 s (median). Injection of H2O2 into the lung parenchyma produced similar responses. By suppressing expiration, the ELR produces a shift in the workload from expiratory muscle to inspiratory muscle. Therefore, we conclude that the ELR may contribute to inspiratory muscle fatigue, not only by directly increasing the inspiratory activity but also by suppressing expiratory activity.


1980 ◽  
Vol 39 (3) ◽  
pp. 303-313 ◽  
Author(s):  
J.G. Martin ◽  
M. Habib ◽  
L.A. Engel

1977 ◽  
Vol 233 (1) ◽  
pp. H80-H86 ◽  
Author(s):  
E. A. Egan ◽  
R. M. Nelson ◽  
I. H. Gessner

Ten anesthetized dogs, 48 h postintravenous 131I-albumin injection, had a segment of lung airspace isolated by a balloon-tipped catheter lodged in a bronchus. An isotonic saline solution containing trace amounts of Blue Dextran, 125I-albumin, and 57Co-cyanocobalamin was instilled into the lung segment. During control periods, lung saline was absorbed at a rate of 0.133% per minute as measured by indicator dilution of Blue Dextran. Only 57Co-cyanocobalamin crossed the epithelium. Acute hemodynamic pulmonary edema was produced by aortic constriction plus saline overload. In pulmonary edema the fluid volume in the airspace increased at the rate of 0.96% per minute, and there was a significant influx of 131I-albumin into the lung saline from the blood in all animals. However, neither 125I-albumin nor Blue Dextran diffused from the airspace into blood during edema; both were merely diluted by fluid influx. The rate of diffusion of 57Co-cyanocobalamin increased fivefold during edema. A small number of discrete breaks in the lung epithelium allowing bulk flow of interstitial fluid is proposed to account for the one-way movement of albumin in hemodynamic alveolar edema.


1981 ◽  
Vol 43 (2) ◽  
pp. 117-132 ◽  
Author(s):  
Giorgio Citterio ◽  
Emilio Agostoni

Sign in / Sign up

Export Citation Format

Share Document