solute permeability
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 10)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Wendy Aragón ◽  
Damien Formey ◽  
Norma Yaniri Aviles-Baltazar ◽  
Martha Torres ◽  
Mario Serrano

The chemical composition of a plant cuticle can change in response to various abiotic or biotic stresses and plays essential functions in disease resistance responses. Arabidopsis thaliana mutants altered in cutin content are resistant to Botrytis cinerea, presumably because of increased cuticular water and solute permeability, allowing for faster induction of defense responses. Within this context, our knowledge of wax mutants is limited against this pathogen. We tested the contribution of cuticular components to immunity to B. cinerea using mutants altered in either cutin or wax alone, or in both cutin and wax contents. We found that even all the tested mutants showed increased permeability and reactive oxygen species (ROS) accumulation in comparison with wild-type plants and that only cutin mutants showed resistance. To elucidate the early molecular mechanisms underlying cuticle-related immunity, we performed a transcriptomic analysis. A set of upregulated genes involved in cell wall integrity and accumulation of ROS were shared by the cutin mutants bdg, lacs2-3, and eca2, but not by the wax mutants cer1-4 and cer3-6. Interestingly, these genes have recently been shown to be required in B. cinerea resistance. In contrast, we found the induction of genes involved in abiotic stress shared by the two wax mutants. Our study reveals new insight that the faster recognition of a pathogen by changes in cuticular permeability is not enough to induce resistance to B. cinerea, as has previously been hypothesized. In addition, our data suggest that mutants with resistant phenotype can activate other defense pathways, different from those canonical immune ones.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2576
Author(s):  
Yunfei Li ◽  
Yifan Xia ◽  
Huixiang Zhu ◽  
Eric Luu ◽  
Guangyao Huang ◽  
...  

The blood–brain barrier (BBB) is important in the normal functioning of the central nervous system. An altered BBB has been described in various neuropsychiatric disorders, including schizophrenia. However, the cellular and molecular mechanisms of such alterations remain unclear. Here, we investigate if BBB integrity is compromised in 22q11.2 deletion syndrome (also called DiGeorge syndrome), which is one of the validated genetic risk factors for schizophrenia. We utilized a set of human brain microvascular endothelial cells (HBMECs) derived from the induced pluripotent stem cell (iPSC) lines of patients with 22q11.2-deletion-syndrome-associated schizophrenia. We found that the solute permeability of the BBB formed from patient HBMECs increases by ~1.3–1.4-fold, while the trans-endothelial electrical resistance decreases to ~62% of the control values. Correspondingly, tight junction proteins and the endothelial glycocalyx that determine the integrity of the BBB are significantly disrupted. A transcriptome study also suggests that the transcriptional network related to the cell–cell junctions in the compromised BBB is substantially altered. An enrichment analysis further suggests that the genes within the altered gene expression network also contribute to neurodevelopmental disorders. Our findings suggest that neurovascular coupling can be targeted in developing novel therapeutical strategies for the treatment of 22q11.2 deletion syndrome.


2020 ◽  
Vol 319 (6) ◽  
pp. L957-L967
Author(s):  
M. Woodall ◽  
J. Jacob ◽  
K. K. Kalsi ◽  
V. Schroeder ◽  
E. Davis ◽  
...  

Electronic nicotine delivery systems, or e-cigarettes, utilize a liquid solution that normally contains propylene glycol (PG) and vegetable glycerin (VG) to generate vapor and act as a carrier for nicotine and flavorings. Evidence indicated these “carriers” reduced growth and survival of epithelial cells including those of the airway. We hypothesized that 3% PG or PG mixed with VG (3% PG/VG, 55:45) inhibited glucose uptake in human airway epithelial cells as a first step to reducing airway cell survival. Exposure of H441 or human bronchiolar epithelial cells (HBECs) to PG and PG/VG (30–60 min) inhibited glucose uptake and mitochondrial ATP synthesis. PG/VG inhibited glycolysis. PG/VG and mannitol reduced cell volume and height of air-liquid interface cultures. Mannitol, but not PG/VG, increased phosphorylation of p38 MAPK. PG/VG reduced transepithelial electrical resistance, which was associated with increased transepithelial solute permeability. PG/VG decreased fluorescence recovery after photobleaching of green fluorescent protein-linked glucose transporters GLUT1 and GLUT10, indicating that glucose transport function was compromised. Puffing PG/VG vapor onto the apical surface of primary HBECs for 10 min to mimic the effect of e-cigarette smoking also reduced glucose transport. In conclusion, short-term exposure to PG/VG, key components of e-cigarettes, decreased glucose transport and metabolism in airway cells. We propose that this was a result of PG/VG reduced cell volume and membrane fluidity, with further consequences on epithelial barrier function. Taking these results together, we suggest these factors contribute to reduced defensive properties of the epithelium. We propose that repeated/chronic exposure to these agents are likely to contribute to airway damage in e-cigarette users.


Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 166
Author(s):  
Bongani Michael Xaba ◽  
Sekomeng Johannes Modise ◽  
Bamidele Joseph Okoli ◽  
Mzimkhulu Ephraim Monapathi ◽  
Simphiwe Nelana

Membrane separation processes tender a capable option for energy-demanding separation processes. Nanofiltration (NF) and reverse osmosis (RO) membranes are among the most explored, with a latent use in the chemical industry. In this study, four commercial membranes (NF90, NF270, BW30, and XLE) were investigated for their applicability based on the key structural performance characteristics in the recycling of Pd-based catalysts from Heck coupling post-reaction mixture. Pure water and organic solvent permeabilities, uncharged solute permeability, swelling, and catalyst rejection studies of the membranes were conducted as well as the morphological characterization using Fourier transform infrared, field emission gun scanning electron microscopy, and atomic force microscopy. Characterization results showed trends consistent with the manufactures’ specifications. Pure water and organic solvent fluxes generally followed the trend NF270 > NF90 > BW30 > XLE, with the solvent choice playing a major role in the separation process. Pd(PPh3)2Cl2 was well rejected by almost all membranes in 2-propanol; however, XLE rejects Pd(OAc)2 better at high pressure in acetonitrile. Our study, therefore, revealed that the separation and reuse of the two catalysts by NF90 at 10 bar resulted in 97% and 49% product yields with 52% and 10% catalyst retention for Pd(OAc)2 while Pd(PPh3)2Cl2. gave 87% and 6% yields with 58% and 36% catalyst retention in the first and second cycles, respectively. Considering, the influence of membrane–solute interactions in Pd-catalyst rejection, a careful selection of the polymeric membrane and solvent, a satisfactory separation, and recovery can be achieved.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 692 ◽  
Author(s):  
A. Ruiz-García ◽  
I. Nuez

Reverse osmosis is the leading process in seawater desalination. However, it is still an energy intensive technology. Feed spacer geometry design is a key factor in reverse osmosis spiral wound membrane module performance. Correlations obtained from experimental work and computational fluid dynamics modeling were used in a computational tool to simulate the impact of different feed spacer geometries in seawater reverse osmosis spiral wound membrane modules with different permeability coefficients in pressure vessels with 6, 7 and 8 elements. The aim of this work was to carry out a comparative analysis of the effect of different feed spacer geometries in combination with the water and solute permeability coefficients on seawater reverse osmosis spiral wound membrane modules performance. The results showed a higher impact of feed spacer geometries in the membrane with the highest production (highest water permeability coefficient). It was also found that the impact of feed spacer geometry increased with the number of spiral wound membrane modules in series in the pressure vessel. Installation of different feed spacer geometries in reverse osmosis membranes depending on the operating conditions could improve the performance of seawater reverse osmosis systems in terms of energy consumption and permeate quality.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 463
Author(s):  
Andrzej Ślęzak ◽  
Wioletta M. Bajdur ◽  
Kornelia M. Batko ◽  
Radomir Šcurek

Using the classical Kedem–Katchalsky’ membrane transport theory, a mathematical model was developed and the original concentration volume flux (Jv), solute flux (Js) characteristics, and S-entropy production by Jv, ( ( ψ S ) J v ) and by Js ( ( ψ S ) J s ) in a double-membrane system were simulated. In this system, M1 and Mr membranes separated the l, m, and r compartments containing homogeneous solutions of one non-electrolytic substance. The compartment m consists of the infinitesimal layer of solution and its volume fulfills the condition Vm → 0. The volume of compartments l and r fulfills the condition Vl = Vr → ∞. At the initial moment, the concentrations of the solution in the cell satisfy the condition Cl < Cm < Cr. Based on this model, for fixed values of transport parameters of membranes (i.e., the reflection (σl, σr), hydraulic permeability (Lpl, Lpr), and solute permeability (ωl, ωr) coefficients), the original dependencies Cm = f(Cl − Cr), Jv = f(Cl − Cr), Js = f(Cl − Cr), ( Ψ S ) J v = f(Cl − Cr), ( Ψ S ) J s = f(Cl − Cr), Rv = f(Cl − Cr), and Rs = f(Cl − Cr) were calculated. Each of the obtained features was specially arranged as a pair of parabola, hyperbola, or other complex curves.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Philip Kitchen ◽  
Mootaz M. Salman ◽  
Simone U. Pickel ◽  
Jordan Jennings ◽  
Susanna Törnroth-Horsefield ◽  
...  

AbstractAquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative water channel proteins suggest narrow channels conduct water, whilst wider channels permit passage of solutes. To assess this model of selectivity, we used mutagenesis, permeability measurements and in silico comparisons of water-specific as well as glycerol-permeable human AQPs. Our studies show that single amino acid substitutions in the selectivity filters of AQP1, AQP4 and AQP3 differentially affect glycerol and urea permeability in an AQP-specific manner. Comparison between in silico-calculated channel cross-sectional areas and in vitro permeability measurements suggests that selectivity filter cross-sectional area predicts urea but not glycerol permeability. Our data show that substrate discrimination in water channels depends on a complex interplay between the solute, pore size, and polarity, and that using single water channel proteins as representative models has led to an underestimation of this complexity.


2019 ◽  
Vol 27 (2) ◽  
Author(s):  
Sybille Kempe ◽  
Giorgio Fois ◽  
Cornelia Brunner ◽  
Thomas K. Hoffmann ◽  
Janina Hahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document