trapped gas
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 27)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
W. N. Adyani W. Razak ◽  
Nor Idah Kechut ◽  
Edward Andrews ◽  
Samuel Krevor

Abstract Spatial image resolution has limited previous attempts to characterize the thin film flow of oil sandwiched in-between gas and water in a three-phase fluid system This paper describes how a systematically designed displacement experiment can produce imagery to define the film flow process in a 3D pore space of water-wet sandstone rocks. We image multiphase flow at the pore scale through three displacement experiments conducted on water-wet outcrop rock with variable spreading tendencies. The experiment has been formulated to observe the relationship between fluid spreading, phase saturations, and pore-scale displacement mechanisms. We provide exhaustive evidence of the three-phase fluid configurations that serve as a proxy mechanism assisting the fluid displacement process in a three-phase system, which includes the oil sandwiches in-between water and gas, the flow of oil via clay fabrics, and the double-displacement process that generates oil and water film in 3D pore spaces. Further, we show evidence that the stable thin-oil film has enhanced the gas trapping mechanism in the water-wet rocks. We observed that the oil layer had covered the isolated and trapped gas blobs, enhancing their stability. As a result, the trapped gas in the positive and zero spreading systems is slightly higher than in the negative spreading system due to a stable oil film. We analyze the Euler characteristic of the individual fluid phases and the interface pair of the fluids during waterflooding, gas injection, and chase water flooding. The comparison of the Euler characteristic for the connected and disconnected fluid phases between three different spreading systems (i.e., positive, zero, and negative) shows that the oil layer's connectivity is highest in the positive spreading system and lowest in the negative spreading system. The oil layer in the positive spreading system is also thicker than in the negative spreading system.


2021 ◽  
pp. 1-15
Author(s):  
Kelvin Abaa ◽  
John Wang ◽  
Derek Elsworth ◽  
Mku Ityokumbul

Summary Fracturing fluid filtrate that leaks off during injection is imbibed by strong capillary forces present in low-permeability sandstones and may severely reduce the effective gas permeability during cleanup and post-fracture production. This work aims to investigate the role fracturing fluid filtrate from slickwater has on rock-fluid and fluid-fluid interactions and to quantify the resulting multiphase permeability evolution during imbibition and drainage of the filtrate by means of specialized core laboratory techniques. Three suites of experiments were conducted. In the first suite of experiments, a fluid leakoff test was conducted on selected core samples to determine the extent of polymer invasion and leakoff characteristics. In the second suite, multigas relative permeability measurements were conducted on sandstone plugs saturated with fracturing fluid filtrate. A combination of controlled fluid evaporation and pulse decay permeability technique was used to measure liquid and gas effective permeabilities for both drainage and imbibition cycles. These experiments aim to capture dynamic permeability evolution during invasion and cleanup of fracturing fluid (slickwater). The final suite of experiments consists of adsorption flow tests to investigate, identify, and quantify possible mechanisms for adsorption of the polymeric molecules of friction reducers present in the fluid filtrate to the pore walls of the rock sample. Imbibition tests and observations of contact angles were conducted to validate possible wettability changes. Results from multiphase permeability flow tests show an irreversible reduction in endpoint brine permeability and relative permeability with increasing concentration of friction reducer. Our results also show that effective gas permeability during drainage/cleanup of the imbibed slickwater fluid is controlled to a large degree by trapped gas saturation than by changes in interfacial tension. Adsorption flow tests identified adsorption of polymeric molecules of the friction reducer present in the fluid to the pore walls of the rock. The adsorption friction reducer increases the wettability of the rock surface and results in the reduction of liquid relative permeability. The originality of this work is to diagnose formation damage mechanisms from laboratory experiments that adequately capture multiphase permeability evolution specific to a slickwater fluid system, during imbibition and cleanup. This will be useful in optimizing fracturing fluid selection.


2021 ◽  
Vol 20 ◽  
pp. S253
Author(s):  
M. Dumas ◽  
R. Jensen ◽  
J. Au ◽  
S. Munidasa ◽  
J. Woods ◽  
...  

Author(s):  
Kai Li ◽  
Karl-Heinz A. A. Wolf ◽  
William R. Rossen

Abstract In enhanced oil recovery, foam can effectively mitigate conformance problems and maintain a stable displacement front, by trapping gas and reducing its relative permeability in situ. In this study, to understand gas trapping in fractures and how it affects foam behavior, we report foam experiments in a 1-m-long glass model fracture with a hydraulic aperture of 80 $$\upmu $$ μ m. One wall of the fracture is rough, and the other is smooth. Between the two is a 2D porous medium representing the aperture in a fracture. The fracture model allows direct visualization of foam inside the fracture using a high-speed camera. This study is part of a continuing program to determine how foam behaves as a function of the geometry of the fracture pore space (AlQuaimi and Rossen in Energy & Fuels 33: 68-80, 2018a). We find that local equilibrium of foam (where the rate of bubble generation equals that of bubble destruction) has been achieved within the 1-m model fracture. Foam texture becomes finer, and less gas is trapped as interstitial velocity, and pressure gradient increase. Shear-thinning rheology of foam has also been observed. The fraction of trapped gas is significantly lower in our model (less than 7%) than in 3D geological pore networks. At the extreme, when velocity increases to 7 mm/s, there is no gas trapped inside the fracture. Our experimental results of trapped-gas fraction correlate well with the correlation of AlQuaimi and Rossen (SPE J 23: 788-802, 2018b) for fracture-like porous media. This suggests that the correlation can also be applied to gas trapping in fractures with other geometries. Article Highlights We have made a lab-scale 1-meter-long transparent glass model representing a geological fracture with roughened surface, and we have implemented a direct method of image analysis to quantify the texture of bubbles in the fracture and to link the texture with the strength of the foam; We have successfully created surfactant-stabilized foam flow inside the fracture and examined its stability along the 1-meter-long fracture; We explain the mechanism of gas trapping in fractures and how it affects foam behavior. We also discuss how viscous force and capillary force affect gas trapping in fractures at our experimental conditions. Graphic Abstract


Author(s):  
M Schweighart ◽  
W Macher ◽  
G Kargl ◽  
B Gundlach ◽  
H L Capelo

Abstract According to current theories of the formation of stellar systems, comets belong to the oldest and most pristine class of bodies to be found around a star. When approaching the Sun, the nucleus shows increasing activity and a pressure increase inside the material causes sublimated and trapped gas molecules to stream away from their regions of origin towards the surface. The present work studies two essential mechanisms of gas transport through a porous layer, namely the Darcy and the Knudsen flow. Gas flow measurements are performed in the laboratory with several analogue materials, which are mimicking dry cometary surface properties. In this first series of measurements, the aim was to separate gas transport properties from internal sources like local sublimation or release of trapped gases. Therefore, only dry granular materials were used and maintaining a low temperature environment was unnecessary. The gas permeability and the Knudsen diffusion coefficient of the sample materials are obtained, thereby representing the relative importance of the respective flow mechanism. The experiments performed with air at a stable room temperature show that the grain size distribution and the packing density of the sample play a major role for the permeability of the sample. The larger the grains, the bigger the permeability and the Knudsen diffusion coefficient. From the latter we estimated effective pore diameters. Finally, we explain how these parameters can be adapted to obtain the gas flow properties of the investigated analogue materials under the conditions to be expected on the comet.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1147
Author(s):  
Mahesh R. G. Prasad ◽  
Siwen Gao ◽  
Napat Vajragupta ◽  
Alexander Hartmaier

Under the typical hot isostatic pressing (HIP) processing conditions, plastic deformation by dislocation slip is considered the primary mechanism for pore shrinkage, according to experimental observations and deformation mechanism maps. In the present work, a crystal plasticity model has been used to investigate the influence of applied pressure and holding time on porosity reduction in a nickel-base single crystal superalloy. The influence of trapped gas on pore shrinkage is modeled by coupling mechanical deformation with pore–gas interaction. In qualitative agreement with experimental investigations, we observe that increasing the applied pressure or the holding time can effectively reduce porosity. Furthermore, the effect of pore shape on the shrinkage is observed to depend on a combination of elastic anisotropy and the complex distribution of stresses around the pore. Simulation results also reveal that, for pores of the same shape, smaller pores (radius < 0.1 μm) have a higher shrinkage rate in comparison to larger pores (radius ≥ 0.1 μm), which is attributed to the increasing pore surface energies with decreasing pore sizes. It is also found that, for smaller initial gas-filled pores (radius < 0.1 μm), HIP can result in very high gas pressures (on the order of GPa). Such high pressures either act as a driving force for argon to diffuse into the surrounding metal during HIP itself, or it can result in pore re-opening during subsequent annealing or mechanical loading. These results demonstrate that the micromechanical model can quantitatively evaluate the individual influences of HIP processing conditions and pore characteristics on pore annihilation, which can help optimize the HIP process parameters in the future.


Author(s):  
Yingxue Hu ◽  
Yun She ◽  
Anindityo Patmonoaji ◽  
Chunwei Zhang ◽  
Tetsuya Suekane

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Khadijeh Zare ◽  
Hojjat Mahiyar ◽  
Mojtaba Ghaedi

Abstract Water level rising in fracture networks of a naturally fractured gas reservoir is extremely challenging and can significantly decrease the ultimate recovery due to reservoir heterogeneity. Although capillary drainage and gravity force can enhance the displacement of gas recovery from matrix to fracture, these forces may not be so effective in mobilizing a large amount of trapped gas through the matrix. So called, the use of seismic wave can be suggested as a low cost and environmentally friendly enhanced method compared with the other conventional enhanced methods. This article is aimed to examine the ability of seismic vibration in generating an efficient driving force for moving the remaining gas into the fracture which, to the best of the author’s knowledge, has not been reported so far. To this end, an in-house numerical simulator has been developed to investigate this enhanced recovery method and also to evaluate the effect of wave characteristics as well as rock properties on the ultimate recovery. The governing equations are solved numerically using finite difference approach and the accuracy of these equations was compared with a commercial simulator for verification. The results are very encouraging and show substantial gas recovery enhancement by applying seismic waves. Our investigation also shows that this stimulation method is more efficient at lower frequencies and also in higher permeable matrix and fractures.


2020 ◽  
pp. 146808742093236
Author(s):  
Mateos Kassa ◽  
Thomas Leroy ◽  
Anthony Robert ◽  
Fabien Vidal-Naquet

In-cylinder pressure oscillations in internal combustion engines have been associated with increased heat losses and damages to the engine components. The links between the acoustic waves and the increased heat transfer (and potentially ensuing engine damages) have not yet been well understood. In this study, a high-fidelity large eddy simulation model incorporating an auto-ignition model is used to simulate the combustion process and the associated pressure oscillation at various engine operating conditions. The study serves to develop a better understanding of the acoustic waves in a combustion chamber and their effect on wall heat transfer. First, a simplified model of the pressure oscillations is proposed and shown to accurately characterize the pressure in the combustion chamber. Second, the simplified pressure model and acoustic theory are leveraged to develop a model of the in-cylinder gas velocities. Finally, a heat transfer model is presented that takes into consideration the pressure/velocity oscillations and the inherent acoustic properties of the trapped gas. The increase in heat transfer is shown to primarily stem from an increased heat transfer coefficient due to the velocity oscillations of the trapped gas. The results are consistent with previously observed experimental measurements of the heat flux in the presence of pressure oscillations.


Sign in / Sign up

Export Citation Format

Share Document